scholarly journals Pre-Stack Seismic Data-Driven Pre-Salt Carbonate Reef Reservoirs Characterization Methods and Application

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 973
Author(s):  
Xingda Tian ◽  
Handong Huang ◽  
Jun Gao ◽  
Yaneng Luo ◽  
Jing Zeng ◽  
...  

Carbonate reservoirs have significant reserves globally, but the substantial heterogeneity brings intractable difficulties to exploration. In the work area, the thick salt rock reduces the resolution of pre-salt seismic signals and increases the difficulty of reservoir characterization. Therefore, this paper proposes to utilize wavelet frequency decomposition technology to depict the seismic blank reflection area’s signal and improve the pre-salt signal’s resolution. The high-precision pre-stack inversion based on Bayesian theory makes full use of information from various angles and simultaneously inverts multiple elastic parameters, effectively depicting reservoirs with substantial heterogeneity. Integrating the high-precision inversion results and the Kuster-Toksöz model, a porosity prediction method is proposed. The inversion results are consistent with the drilling rock samples and well-logging porosity results. Moreover, the reef’s accumulation and growth, which conform to the geological information, proves the accuracy of the above methods. This paper also discusses the seismic reflection characteristics of reefs and the influence of different lithological reservoirs on the seismic waveform response characteristics through forward modeling, which better proves the rationality of porosity inversion results. It provides a new set of ideas for future pre-salt carbonate reef reservoirs’ prediction and characterization methods.

2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


2020 ◽  
Vol 10 (15) ◽  
pp. 5381
Author(s):  
Yi Zhang ◽  
Zaijun Wu ◽  
Cheng Qian ◽  
Xiao Tan ◽  
Jinggang Yang ◽  
...  

In this paper, cross-linked polyethylene (XLPE) cables of the same batch from Factory A, which ran from 1 to 8 years in Jiangsu Province, are sampled. Some widely accepted aging characterization methods of XLPE cables such as the gel content test, differential scanning calorimetry (DSC) test, tensile test and hardness test are employed to obtain the physicochemical, mechanical and electrical properties of the samples. Then, some lifespan prediction parameters significantly correlated with operating time are obtained through correlation calculations. Finally, a prediction method is proposed to predict the operating time of XLPE cables from Factory A. The test results indicate that parameters including the gel content Cge, the crystallinity XC, tensile strength σ, ultimate elongation δ, the dielectric permittivity ε, and the dielectric loss Jtan are significantly correlated with operating time, which can be used in evaluating the aging degree of XLPE cables. Moreover, due to the high accuracy of the experimental verification, it turns out that the lifespan prediction method proposed in this paper can be used to determine the operating time of XLPE cables from Factory A in future research.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. P11-P21 ◽  
Author(s):  
Marcilio Castro de Matos ◽  
Malleswar (Moe) Yenugu ◽  
Sipuikinene Miguel Angelo ◽  
Kurt J. Marfurt

In recent years, 3D volumetric attributes have gained wide acceptance by seismic interpreters. The early introduction of the single-trace complex trace attribute was quickly followed by seismic sequence attribute mapping workflows. Three-dimensional geometric attributes such as coherence and curvature are also widely used. Most of these attributes correspond to very simple, easy-to-understand measures of a waveform or surface morphology. However, not all geologic features can be so easily quantified. For this reason, simple statistical measures of the seismic waveform such as rms amplitude and texture analysis techniques prove to be quite valuable in delineating more chaotic stratigraphy. In this paper, we coupled structure-oriented texture analysis based on the gray-level co-occurrence matrix with self-organizing maps clustering technology and applied it to classify seismic textures. By this way, we expect that our workflow should be more sensitive to lateral changes, rather than vertical changes, in reflectivity. We applied the methodology to a remote sensing image and to a 3D seismic survey acquired over Osage County, Oklahoma, USA. Our results indicate that our method can be used to delineate meandering channels as well as to characterize chert reservoirs.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Yukun Sun ◽  
Qiang Cui ◽  
Yonghong Huang ◽  
Ye Yuan

The high performance sensorless performance of the bearingless permanent magnet synchronous motor is the main direction to improve the reliability of the drive system and reduce the cost of the system, and the high-precision rotor position and displacement prediction method is the key technology to realize the high performance sensorless operation. In view of the above problems, a rotor displacement and position prediction method based on kernel extreme learning machine is studied in this paper. On the basis of the mathematical model of BPMSM, this method predicted the position and displacement of the rotor according to the current and flux linkage of suspension windings and torque windings by KELM. The construction method of rotor position and displacement prediction model was described; meanwhile the implementation steps of offline training and online prediction were given. Finally, the error between the method and the actual value was compared by simulation and experiment. The results showed that the proposed method had high accuracy and could achieve real-time rotor position and displacement and then provides the basis for realizing sensorless operation control of BPMSM.


1997 ◽  
Vol 37 (1) ◽  
pp. 31
Author(s):  
P.J. Ryan ◽  
T.E. Vinson

In order to achieve successful drilling results on mature fields, geophysical analysis has become increasingly focussed on the application of high precision 3D seismic interpretation and analysis techniques. These techniques were critical to the success of the re-development program recently completed on the Fortescue Field* Gippsland Basin. Fortescue, initially developed in 1983, contains an estimated oil reserve of 300 million barrels. The field is currently over 80 percent depleted. To offset declining production and develop remaining reserves, an 18 well additional drilling program together with upgrades to platform topsides and production facilities was conducted on the field from October 1994 to October 1996.Many of the proposed additional drilling opportunities relied on oil being trapped structurally updip from existing completions. Given the size (approx. 1 MSTB) and subtle, low relief nature of the targets being pursued, the precision of conventional 3D seismic interpretation techniques was inadequate to optimise the location of wells. This necessitated the development of a series of specific tools that could provide high resolution definition of both the trap and lithology as well as optimising well placement.These high precision interpretation techniques include: reservoir subcrop edge prediction through qualitative calibration of geological models to seismic data: the assessment of overburden velocity distortions of the seismic time field by utilising isochron mapping and interval attribute analysis; and prediction of trap geometries and lateral stratigraphic variations by the application of seismic waveform attributes.The application of these advanced 3D seismic interpretation techniques and their integration with related geoscience and engineering technologies resulted in the completion of a successful 18 well re-development program for the Fortescue field.


Sign in / Sign up

Export Citation Format

Share Document