scholarly journals Enhancement of Flotation Performance of Oxidized Coal by the Mixture of Laurylamine Dipropylene Diamine and Kerosene

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1271
Author(s):  
Qingshan Zhang ◽  
Chenkai Niu ◽  
Xiangning Bu ◽  
Muhammad Bilal ◽  
Chao Ni ◽  
...  

Conventional hydrocarbon oil cannot adhere effectively to oxidized coal, resulting in a low yield of clean coal. In this study, a high-speed homogenizer was used to emulsify LDD (laurylamine dipropylene diamine) and kerosene, which enhanced the flotation efficiency of oxidized coal. The flotation results showed an increase from 4.12% (only kerosene) to 23.33% (emulsified oil). An increase in contact angle indicated that the mixture reagent can increase the hydrophobicity of coal particles, which is attributed to the adsorption of LDD onto the coal particle surface and the decrease of the oil droplet A lower surface tension of LDD allows it to produce a stable layer of froth than the layer generated by kerosene alone.


2012 ◽  
Vol 268-270 ◽  
pp. 1084-1093
Author(s):  
Xiao Fang Yuan ◽  
Jing Yin Li ◽  
Bin Zhang

The impact processes of water and ethanol drops on a rotating horizontal aluminum disk were recorded and analyzed using a high-speed digital camera together with an image analysis program. The angular velocities of the disk were altered to study the effect of surface tension of drops on drop impact processes. The experimental results show that a lower surface tension will result in a higher tangential spread factor and a lower receding rate during the receding stage, for the drop impinging and depositing on a rotating disk. In addition, a lower surface tension of the drop tends to promote the occurrence of splash. The experimental results further verify a proposed correlation of splash-deposition boundary for drops impinging on a rotating disk. Both drops, though they have a quite different surface tension, experience four stages, with two new stages different from those of drops impinging on stationary surfaces. Their tangential spreading factors both increase obviously with the tangential velocity at the impact point, while their radial spreading factors vary a little.



2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Donyo Hristov GANCHEV

<p class="042abstractstekst">The investigation about surface tension of water used for preparation of pesticide solutions reveals it is quite diverse and changeable without any logical correlation towards location, time, and type of water source. Moreover, spraying with solutions with lower surface tension give bigger flow rates due to the lower resistance of fluid to the nozzles. The conducted trials show that plant surfaces with more rough texture require to be sprayed with pesticide solutions with lower surface tension. The wax content of the surfaces has no significant impact on surface tension requirement.</p><p> </p>



2008 ◽  
Author(s):  
Alexander L. Brown ◽  
Sam S. Yoon ◽  
Richard A. Jepsen

We are engaged in efforts to model spray phenomena. Applications of principal interest include the high-speed impact of large vessels of fuel and the subsequent fire, fire suppression, solid propellant fires, pressurized pipe or tank rupture, and fire propagation for cascading liquid fuels. To help guide research and development efforts geared towards designing an appropriate spray modeling capability, a Phenomenon Identification and Ranking exercise was conducted. The summarized results of the exercise in tabular format, a Phenomenon Identification and Ranking Table (PIRT), are presented. The table forms the context for a textual literature review of the existing state of knowledge for modeling applications of interest. This exercise highlights some of the shortcomings in existing tools and knowledge, and suggests productive research activities that can help advance the modeling capabilities for the desired applications. Notable needs exist for research in high Weber number particle-surface impacts, particle collisions, multi-physics couplings, and low void fraction multi-phase coupling.



2018 ◽  
Vol 844 ◽  
pp. 162-186 ◽  
Author(s):  
Abdulrahman B. Aljedaani ◽  
Chunliang Wang ◽  
Aditya Jetly ◽  
S. T. Thoroddsen

We investigate experimentally the breakup of the Edgerton crown due to Marangoni instability when a highly viscous drop impacts on a thin film of lower-viscosity liquid, which also has different surface tension than the drop liquid. The presence of this low-viscosity film modifies the boundary condition, giving effective slip to the drop along the solid substrate. This allows the high-viscosity drop to form a regular bowl-shaped crown, which rises vertically away from the solid and subsequently breaks up through the formation of a multitude of Marangoni holes. Previous experiments have proposed that the breakup of the crown results from a spray of fine droplets ejected from the thin low-viscosity film on the solid, e.g. Thoroddsen et al. (J. Fluid Mech., vol. 557, 2006, pp. 63–72). These droplets can hit the inner side of the crown forming spots with lower surface tension, which drives a thinning patch leading to the hole formation. We test the validity of this assumption with close-up imaging to identify individual spray droplets, to show how they hit the crown and their lower surface tension drive the hole formation. The experiments indicate that every Marangoni-driven patch/hole is promoted by the impact of such a microdroplet. Surprisingly, in experiments with pools of higher surface tension, we also see hole formation. Here the Marangoni stress changes direction and the hole formation looks qualitatively different, with holes and ruptures forming in a repeatable fashion at the centre of each spray droplet impact. Impacts onto films of the same liquid, or onto an immiscible liquid, do not in general form holes. We furthermore characterize the effects of drop viscosity and substrate-film thickness on the overall evolution of the crown. We also measure the three characteristic velocities associated with the hole formation: i.e. the Marangoni-driven growth of the thinning patches, the rupture speed of the resulting thin films inside these patches and finally the growth rate of the fully formed holes in the crown wall.



1997 ◽  
Vol 273 (5) ◽  
pp. L907-L912 ◽  
Author(s):  
N. J. Gross ◽  
R. Veldhuizen ◽  
F. Possmayer ◽  
R. Dhand

A serine-active enzyme, “surfactant convertase,” is required for the conversion of surfactant from the tubular myelin (TM) form to the small vesicular (SV) form. This transformation involves at least two steps, the conversion of TM to a surface-active film at the air-fluid interface and the reorientation of the film into the surface-inactive SV form; we asked if convertase was required for the first of these steps. Rat and mouse TMs were pretreated with diisopropyl fluorophosphate (DFP) to inactivate endogenous convertase activity or with vehicle and then were analyzed for their ability to lower surface tension in vitro as an index of the conversion of TM to a surface film. DFP pretreatment did not alter the ability of TM preparations to lower surface tension, as assessed by pulsating bubble, and it did not affect the behavior of TM in a surface balance. In an experiment designed to test the ability of TM to feed a surface film to exhaustion, TMs that had been pretreated with DFP or vehicle performed similarly. These experiments show that convertase activity is not required for the conversion of TM to a monolayer and suggest, instead, that convertase acts at a post surface film stage.





Langmuir ◽  
1996 ◽  
Vol 12 (10) ◽  
pp. 2570-2579 ◽  
Author(s):  
Aldert R. van Buuren ◽  
D. Peter Tieleman ◽  
Jacob de Vlieg ◽  
Herman J. C. Berendsen


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 221
Author(s):  
Hua Han ◽  
An Liu ◽  
Huaifa Wang

In this study, the effect of hydrodynamic cavitation (HC) on the conditioning stage (HCCS), separation stage (HCSS), and whole stage (HCWS) of coal flotation was investigated by flotation tests, laser granulometry, and contact angle measurements. The flotation results indicate that compared to conventional flotation, all HC-assisted flotation methods can improve concentrate combustible recovery and flotation constant rate. HCCS and HCSS show similar levels of improvement, while HCWS has a better flotation efficiency. The screening tests demonstrate that HC has the advantage of being able to liberate coarse coal particles (+0.25 mm) prior to being combined with gangues. On one hand, HC promotes the dispersion of both particles and agents, while longer cavitation time in HCCS does not lead to better flotation performance. On the other hand, enhancement of the adsorption of the collector on the surface of coal particles in HCCS is confirmed by flotation concentrate contact angle tests. However, HCSS leads to a decrease in concentrate hydrophobicity, compared to conventional flotation. The micro-nanobubbles generated by HC play an important role in improving flotation performance. HCWS offers the advantages of both HCCS and HCSS, and the cooperated mechanism of different HC modes enhances the recovery of coal particles in flotation.



Sign in / Sign up

Export Citation Format

Share Document