scholarly journals Carminic Acid Stabilized with Aluminum-Magnesium Hydroxycarbonate as New Colorant Reducing Flammability of Polymer Composites

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 560 ◽  
Author(s):  
Anna Marzec ◽  
Bolesław Szadkowski ◽  
Jacek Rogowski ◽  
Waldemar Maniukiewicz ◽  
Dariusz Moszyński ◽  
...  

In this study, hybrid pigments based on carminic acid (CA) were synthesized and applied in polymer materials. Modification of aluminum-magnesium hydroxycarbonate (LH) with CA transformed the soluble chromophore into an organic-inorganic hybrid colorant. Secondary ion mass spectroscopy (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectroscopy were used to study the structure, composition, and morphology of the insoluble LH/CA colorant. Successful modification of the LH was confirmed by the presence of interactions between the LH matrix and molecules of CA. XPS analysis corroborated the presence of CA complexes with Mg2+ ions in the LH host. The batochromic shift in UV-Vis spectra of the organic-inorganic hybrid colorant was attributed to metal-dye interactions in the organic-inorganic hybrid colorants. Strong metal-dye interactions may also be responsible for the improved solvent resistance and chromostability of the modified LH. In comparison to uncolored ethylene-norbornene copolymer (EN), a modified EN sample containing LH/CA pigment showed lower heat release rate (HRR) and reduced total heat release (THR), providing the material with enhanced flame retardancy.

Author(s):  
Katarzyna Matras-Postolek ◽  
A. Zaba ◽  
S. Sovinska ◽  
D. Bogdal

Zinc sulphide (ZnS) and zinc selenide (ZnSe) and manganese-doped and un-doped with different morphologies from 1D do 3D microflowers were successfully fabricated in only a few minutes by solvothermal reactions under microwave irradiation. In order to compare the effect of microwave heating on the properties of obtained  nanocrystals, additionally the synthesis under conventional heating was conducted additionally in similar conditions. The obtained nanocrystals were systematically characterized in terms of structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic activity of ZnSe, ZnS, ZnS:Mn and ZnSe:Mn nanocrystals with different morphologies was evaluated by the degradation of methyl orange (MO) and Rhodamine 6G (R6G), respectively. The results show that Mn doped NCs samples had higher coefficient of degradation of organic dyes under ultraviolet irradiation (UV).


2012 ◽  
Vol 455-456 ◽  
pp. 110-114 ◽  
Author(s):  
Xuan Dong Li ◽  
Xi Jiang Han ◽  
Wen Ying Wang ◽  
Xiao Hong Liu ◽  
Yan Wang ◽  
...  

Nb-doped TiO2 powders with different concentrations of Nb have been synthesized by a sol-gel method and characterized by a series of technologies including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy. The photocatalytic activity of Nb-doped TiO2 is evaluated by degradation efficiency of methyl orange in aqueous solution. The results indicate that the photocatalytic activity of Nb-doped TiO2 synthesized with a Nb/Ti molar ratio of 5% is higher than that of TiO2 under the visible light.


2015 ◽  
Vol 1118 ◽  
pp. 20-27
Author(s):  
Jing Yang ◽  
Bao Song Li ◽  
Xiang Huo ◽  
Hao Xu ◽  
Hai Yun Hou

Pd/SiO2 organic-inorganic hybrid materials were prepared by adding PdCl2 into methyl-modified silica sol. The Pd/SiO2 hybrid materials were characterized by X-ray diffraction (XRD), fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The effects of calcination temperature and Pd-doping on the phase transition of Pd element and the thermal stability of CH3 group in the Pd/SiO2 organic-inorganic hybrid materials were investigated. The results showed that the reduced metallic Pd0 exhibits good thermal stability under H2 atmosphere in the calcination process. Pd element in noncalcined Pd/SiO2 materials exists in PdCl2 form, calcination at 200 °C in a H2 atmosphere produces some metallic Pd0 and calcinations at 350 °C results in the complete transformation of Pd2+ to metallic Pd0. With the increase of calcination temperature, the Pd0 particle sizes increase and the hydrophobic Si−CH3 bands decrease in intensity. As the calcination temperature is greater than or equal to 350 °C, the loading of metallic Pd0 nearly has no influence on the chemical structure but, with the increase of Pd content, the formed Pd0 particle size increases. To keep the hydrophobicity of Pd/SiO2 membrane materials, the optimal calcination temperature is about 350 °C under H2 atmosphere.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sajid U. Khan ◽  
Johan E. ten Elshof

Eu3+-doped LaPO4and Tb3+-doped CePO4luminescent nanoparticles embedded in hybrid organosilica were patterned by two soft lithographic techniques. The role of various parameters such as solution chemistry, thermal protocols, and modification of the mold-substrate surface energies related to pattern shape formation and adhesion to the substrates have been studied. The shrinkage of the oxide patterns and shape evolution during the process was also examined. The patterns were characterized with optical and photoluminescence (PL) microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Compositional analyses were carried out with X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS), and secondary ion mass spectroscopy (SIMS). The results indicated that the final patterns obtained with these two techniques for the same material have different shapes and adherence to the substrates.


2010 ◽  
Vol 5 (1) ◽  
pp. 155892501000500 ◽  
Author(s):  
Soo-Jin Park ◽  
Yong C. Kang ◽  
Ju Y. Park ◽  
Ed A. Evans ◽  
Rex D. Ramsier ◽  
...  

Titania nanofibers were successfully synthesized by sol-gel coating of electrospun polymer nanofibers followed by calcining to form either the pure anatase or rutile phases. Characterization of these materials was carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy techniques. The average diameter of these ceramic nanofibers was observed to be around 200 nm for both the rutile and anatase forms. The valence band structure and optical absorption thresholds differ, however, indicating that nanofibrous mats of titania can be selectively developed for different applications in catalysis and photochemistry.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Feng-shan Zhou ◽  
Dai-mei Chen ◽  
Bao-lin Cui ◽  
Wei-heng Wang

Sodium montmorillonite (MMT) was chosen as the carrier; a serial of CdS/TiO2-MMT nanocomposites with enhanced visible-light absorption ability was prepared by hydrothermal synthesis method combination with semiconductor compound modification method. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy; the results showed that TiO2and CdS nanoparticles were loaded on the surface of montmorillonite uniformly. N2adsorption-desorption experiment showed that the specific surface area of TiO2/montmorillonite nanocomposite made by this method can reach 200 m2/g and pore-size distribution was from 4 to 6 nm; UV-Vis showed that the recombination of CdS and TiO2enhanced visible-light absorption ability of samples of TiO2/montmorillonite and visible-light absorption ability increase with the increased of the adsorption of CdS.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 994
Author(s):  
Chyuan-Haur Kao ◽  
Chia-Shao Liu ◽  
Shih-Ming Chan ◽  
Chih-Chen Kuo ◽  
Shang-Che Tsai ◽  
...  

In this study, the effects of magnesium (Mg) doping and Ammonia (NH3) plasma on the pH sensing capabilities of InGaZnO membranes were investigated. Undoped InGaZnO and Mg-doped pH sensing membranes with NH3 plasma were examined with multiple material analyses including X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectroscopy and transmission electron microscope, and pH sensing behaviors of the membrane in electrolyte-insulator-semiconductors. Results indicate that Mg doping and NH3 plasma treatment could superpositionally enhance crystallization in fine nanostructures, and strengthen chemical bindings. Results indicate these material improvements increased pH sensing capability significantly. Plasma-treated Mg-doped InGaZnO pH sensing membranes show promise for future pH sensing biosensors.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2362
Author(s):  
Emilio Huízar-Padilla ◽  
Héctor Guillén-Bonilla ◽  
Alex Guillén-Bonilla ◽  
Verónica-María Rodríguez-Betancourtt ◽  
A. Sánchez-Martínez ◽  
...  

ZnAl2O4 nanoparticles were synthesized employing a colloidal method. The oxide powders were obtained at 300 °C, and their crystalline phase was corroborated by X-ray diffraction. The composition and chemical structure of the ZnAl2O4 was carried out by X-ray and photoelectron spectroscopy (XPS). The optical properties were studied by UV-vis spectroscopy, confirming that the ZnAl2O4 nanoparticles had a direct transition with bandgap energy of 3.2 eV. The oxide’s microstructures were microbars of ~18.2 nm in size (on average), as analyzed by scanning (SEM) and transmission (TEM) electron microscopies. Dynamic and stationary gas detection tests were performed in controlled propane atmospheres, obtaining variations concerning the concentration of the test gas and the operating temperature. The optimum temperatures for detecting propane concentrations were 200 and 300 °C. In the static test results, the ZnAl2O4 showed increases in propane response since changes in the material’s electrical conductance were recorded (conductance = 1/electrical resistance, Ω). The increases were ~2.8 at 200 °C and ~7.8 at 300 °C. The yield shown by the ZnAl2O4 nanoparticles for detecting propane concentrations was optimal compared to other similar oxides categorized as potential gas sensors.


1993 ◽  
Vol 316 ◽  
Author(s):  
Robert J. Hanrahan ◽  
Ellis D. Verink ◽  
Stephen P. Withrow ◽  
Eero O. Ristolainen

ABSTRACTSurface modification by ion implantation of 18O ions was investigated as a technique for altering the high-temperature oxidation of aluminide intermetallic compounds and related alloys. Specimens of NbAl3 and TiAl were implanted to a dose of 1×1018 ions/cm2 at 168 keV. Doses and accelerating energies were calculated to obtain near-stoichiometric concentrations of oxygen. Use of 18O allowed the implanted oxygen profiles to be measured using secondary ion mass spectroscopy (SIMS). The near surface oxides formed were studied using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy. Specimens were also examined using x-ray diffraction and SEM. This paper presents results for specimens examined in the as-implanted state. The oxide formed due to implantation is a layer containing a mixture of Nb or Ti and amorphous Al oxides.


2020 ◽  
Vol 20 (5) ◽  
pp. 2823-2831
Author(s):  
S. Muthamizh ◽  
C. Sengottaiyan ◽  
R. Jayavel ◽  
V. Narayanan

MoO3 nanostructures with tunable phases such as α-MoO3, β-MoO3 and their mixed phases were synthesized via a simple solid state decomposition method and employed as electrocatalyst for the detection of biomolecule. The phase and crystal structure of the synthesized MoO3 nanostructures were confirmed through X-ray diffraction (XRD) studies. The MoO3 nanostructures were also characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy for their structural, chemical state and optical properties, respectively. The observed results confirmed the successful formation of phase tunable MoO3 nanostructures. The surface texture and morphology of the samples was characterized by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The obtained images showed the formation of hexagons, cubes and rods morphology of MoO3. The synthesized MoO3 nanostructures were used to modify the surface of glassy carbon electrode (GCE) to detect biomolecule (quercetin).


Sign in / Sign up

Export Citation Format

Share Document