scholarly journals Synthesis of ZnAl2O4 and Evaluation of the Response in Propane Atmospheres of Pellets and Thick Films Manufactured with Powders of the Oxide

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2362
Author(s):  
Emilio Huízar-Padilla ◽  
Héctor Guillén-Bonilla ◽  
Alex Guillén-Bonilla ◽  
Verónica-María Rodríguez-Betancourtt ◽  
A. Sánchez-Martínez ◽  
...  

ZnAl2O4 nanoparticles were synthesized employing a colloidal method. The oxide powders were obtained at 300 °C, and their crystalline phase was corroborated by X-ray diffraction. The composition and chemical structure of the ZnAl2O4 was carried out by X-ray and photoelectron spectroscopy (XPS). The optical properties were studied by UV-vis spectroscopy, confirming that the ZnAl2O4 nanoparticles had a direct transition with bandgap energy of 3.2 eV. The oxide’s microstructures were microbars of ~18.2 nm in size (on average), as analyzed by scanning (SEM) and transmission (TEM) electron microscopies. Dynamic and stationary gas detection tests were performed in controlled propane atmospheres, obtaining variations concerning the concentration of the test gas and the operating temperature. The optimum temperatures for detecting propane concentrations were 200 and 300 °C. In the static test results, the ZnAl2O4 showed increases in propane response since changes in the material’s electrical conductance were recorded (conductance = 1/electrical resistance, Ω). The increases were ~2.8 at 200 °C and ~7.8 at 300 °C. The yield shown by the ZnAl2O4 nanoparticles for detecting propane concentrations was optimal compared to other similar oxides categorized as potential gas sensors.

2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


Author(s):  
Katarzyna Matras-Postolek ◽  
A. Zaba ◽  
S. Sovinska ◽  
D. Bogdal

Zinc sulphide (ZnS) and zinc selenide (ZnSe) and manganese-doped and un-doped with different morphologies from 1D do 3D microflowers were successfully fabricated in only a few minutes by solvothermal reactions under microwave irradiation. In order to compare the effect of microwave heating on the properties of obtained  nanocrystals, additionally the synthesis under conventional heating was conducted additionally in similar conditions. The obtained nanocrystals were systematically characterized in terms of structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic activity of ZnSe, ZnS, ZnS:Mn and ZnSe:Mn nanocrystals with different morphologies was evaluated by the degradation of methyl orange (MO) and Rhodamine 6G (R6G), respectively. The results show that Mn doped NCs samples had higher coefficient of degradation of organic dyes under ultraviolet irradiation (UV).


2012 ◽  
Vol 455-456 ◽  
pp. 110-114 ◽  
Author(s):  
Xuan Dong Li ◽  
Xi Jiang Han ◽  
Wen Ying Wang ◽  
Xiao Hong Liu ◽  
Yan Wang ◽  
...  

Nb-doped TiO2 powders with different concentrations of Nb have been synthesized by a sol-gel method and characterized by a series of technologies including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy. The photocatalytic activity of Nb-doped TiO2 is evaluated by degradation efficiency of methyl orange in aqueous solution. The results indicate that the photocatalytic activity of Nb-doped TiO2 synthesized with a Nb/Ti molar ratio of 5% is higher than that of TiO2 under the visible light.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Yoshitaka Nakano ◽  
Shu Saeki ◽  
Takeshi Morikawa

AbstractWe have investigated the effect of N doping into Cu2O films deposited by reactive magnetron sputtering. With increasing N-doping concentration up to 3 at.%, the optical bandgap energy is enlarged from ˜2.1 to ˜2.5 eV with retaining p-type conductivity as determined by optical absorption and Hall-effect measurements. Additionally, photoelectron spectroscopy in air measurements shows an increase in the valence and conduction band shifts with N doping. These experimental results demonstrate possible optical bandgap widening of p-type N-doped Cu2O films, which is a phenomenon that is probably associated with significant structural changes induced by N doping, as suggested from x-ray diffraction measurements.


2014 ◽  
Vol 28 (05) ◽  
pp. 1450009 ◽  
Author(s):  
H. J. WANG ◽  
S. Y. WANG ◽  
W. F. LIU ◽  
X. J. XI ◽  
FENG GUO ◽  
...  

In order to investigate the effects of Ba doping BiFeO 3 on multiferroic properties, Bi 1-x Ba x FeO 3(0≤x≤1)( Ba x BFO ) ceramics were fabricated via rapid solid phase sintering method, and material's structures and electrical properties were investigated. The phase transitions from rhombohedral to pseudo-cubic (x = 10%) and then to tetragonal (x = 40%) were confirmed by X-ray diffraction investigation. Although the electrical conductivity of Ba x BFO (x = 10%, 20% and 30%) ceramics was low, which is a similar trend to previous reports, an abnormal enhancement of electrical conductance was observed in Ba x BFO (x = 1%, 3% and 5%) ceramics. Such as, the electrical conductivity of Ba 0.03 BFO is calculated to be ~106 Ω⋅ cm that is five orders of magnitude higher than that of the BiFeO 3. This has been discussed and ascribed to more percent of oxygen vacancies and Fe 2+ ions in Ba x BFO ceramics, as confirmed by X-ray photoelectron spectroscopy investigation.


1994 ◽  
Vol 346 ◽  
Author(s):  
Manzheng Ge ◽  
Honghua Kan ◽  
Hui Yang ◽  
Jianmin Qiao ◽  
Zhonghua Jiang

ABSTRACTThe Y2O3-La2O3 additive-coated Si3N4 powders of about 1.5 μm in size were prepared by the sol-gel method. X-ray diffraction, X-ray photoelectron spectroscopy, differential thermal analysis, thermogravimetric analysis, electron microscopies, and particle size analysis were used to study the coating on the Si3N4 particles. The results show that properties of the bulk Si3N4 powder are not affected by using the sol-gel coating and the powders are homogeneously coated by a thin layer of the Y2O3-La2O3 additives. The structure of the Y2O3-La2O3 coating layer is amorphous or microcrystalline with a submicron thickness. The coated powders are then more sinterable, and the mechanical properties of the ceramics prepared from such powders are improved.


2010 ◽  
Vol 5 (1) ◽  
pp. 155892501000500 ◽  
Author(s):  
Soo-Jin Park ◽  
Yong C. Kang ◽  
Ju Y. Park ◽  
Ed A. Evans ◽  
Rex D. Ramsier ◽  
...  

Titania nanofibers were successfully synthesized by sol-gel coating of electrospun polymer nanofibers followed by calcining to form either the pure anatase or rutile phases. Characterization of these materials was carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy techniques. The average diameter of these ceramic nanofibers was observed to be around 200 nm for both the rutile and anatase forms. The valence band structure and optical absorption thresholds differ, however, indicating that nanofibrous mats of titania can be selectively developed for different applications in catalysis and photochemistry.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Feng-shan Zhou ◽  
Dai-mei Chen ◽  
Bao-lin Cui ◽  
Wei-heng Wang

Sodium montmorillonite (MMT) was chosen as the carrier; a serial of CdS/TiO2-MMT nanocomposites with enhanced visible-light absorption ability was prepared by hydrothermal synthesis method combination with semiconductor compound modification method. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy; the results showed that TiO2and CdS nanoparticles were loaded on the surface of montmorillonite uniformly. N2adsorption-desorption experiment showed that the specific surface area of TiO2/montmorillonite nanocomposite made by this method can reach 200 m2/g and pore-size distribution was from 4 to 6 nm; UV-Vis showed that the recombination of CdS and TiO2enhanced visible-light absorption ability of samples of TiO2/montmorillonite and visible-light absorption ability increase with the increased of the adsorption of CdS.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 560 ◽  
Author(s):  
Anna Marzec ◽  
Bolesław Szadkowski ◽  
Jacek Rogowski ◽  
Waldemar Maniukiewicz ◽  
Dariusz Moszyński ◽  
...  

In this study, hybrid pigments based on carminic acid (CA) were synthesized and applied in polymer materials. Modification of aluminum-magnesium hydroxycarbonate (LH) with CA transformed the soluble chromophore into an organic-inorganic hybrid colorant. Secondary ion mass spectroscopy (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectroscopy were used to study the structure, composition, and morphology of the insoluble LH/CA colorant. Successful modification of the LH was confirmed by the presence of interactions between the LH matrix and molecules of CA. XPS analysis corroborated the presence of CA complexes with Mg2+ ions in the LH host. The batochromic shift in UV-Vis spectra of the organic-inorganic hybrid colorant was attributed to metal-dye interactions in the organic-inorganic hybrid colorants. Strong metal-dye interactions may also be responsible for the improved solvent resistance and chromostability of the modified LH. In comparison to uncolored ethylene-norbornene copolymer (EN), a modified EN sample containing LH/CA pigment showed lower heat release rate (HRR) and reduced total heat release (THR), providing the material with enhanced flame retardancy.


2020 ◽  
Vol 20 (5) ◽  
pp. 2823-2831
Author(s):  
S. Muthamizh ◽  
C. Sengottaiyan ◽  
R. Jayavel ◽  
V. Narayanan

MoO3 nanostructures with tunable phases such as α-MoO3, β-MoO3 and their mixed phases were synthesized via a simple solid state decomposition method and employed as electrocatalyst for the detection of biomolecule. The phase and crystal structure of the synthesized MoO3 nanostructures were confirmed through X-ray diffraction (XRD) studies. The MoO3 nanostructures were also characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy for their structural, chemical state and optical properties, respectively. The observed results confirmed the successful formation of phase tunable MoO3 nanostructures. The surface texture and morphology of the samples was characterized by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The obtained images showed the formation of hexagons, cubes and rods morphology of MoO3. The synthesized MoO3 nanostructures were used to modify the surface of glassy carbon electrode (GCE) to detect biomolecule (quercetin).


Sign in / Sign up

Export Citation Format

Share Document