scholarly journals Essential Oil of Algerian Eryngium campestre: Chemical Variability and Evaluation of Biological Activities

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2575 ◽  
Author(s):  
Medbouhi ◽  
Benbelaïd ◽  
Djabou ◽  
Beaufay ◽  
Bendahou ◽  
...  

The chemical composition of essential oils extracted from aerial parts of Eryngium campestre collected in 37 localities from Western Algeria was characterized using GC-FID and GC/MS analyses. Altogether, 52 components, which accounted for 70.1 to 86.8% of the total composition oils were identified. The main compounds were Germacrene D (0.4–53.4%), Campestrolide (1.6–35.3%), Germacrene B (0.2–21.5%), Myrcene (0.1–8.4%), α-Cadinol (0.2–7.6%), Spathulenol (0.1–7.6%), Eudesma-4(15)-7-dien-1-β-ol (0.1–7.6%) and τ-Cadinol (0.3–5.5%). The chemical compositions of essential oils obtained from separate organs and during the complete vegetative cycle of the plant were also studied. With the uncommon 17-membered ring lactone named Campestrolide as the main component, Algerian E. campestre essential oils exhibited a remarkable chemical composition. A study of the chemical variability using statistical analysis allowed the discrimination of two main clusters according to the geographical position of samples. The study contributes to the better understanding of the relationship between the plant and its environment. Moreover, the antimicrobial activity of the essential oil was assessed against twelve strains bacteria and two yeasts involved in foodborne and nosocomial infections using paper disc diffusion and dilution agar assays. The in vitro study demonstrated a strong activity against Gram-positive strains such as S. aureus, B. cereus, and E. faecalis. The cytotoxicity and antiparasitic activities (on Lmm and Tbb) of the collective essential oil and one sample rich in campestrolide, as well as some enriched fractions or fractions containing other terpenic compounds, were also analyzed. Campestrolide seems to be one compound responsible for the cytotoxic and antileishmanial effect, while myrcene or/and trans-β-farnesene have a more selective antitrypanosomal activity.

2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Prabodh Satyal ◽  
Bhuwan K. Chhetri ◽  
Noura S. Dosoky ◽  
Ambika Poudel ◽  
William N. Setzer

The essential oil from the dried rhizome of Nardostachys grandiflora, collected from Jaljale, Nepal, was obtained in 1.4% yield, and a total of 72 compounds were identified constituting 93.8% of the essential oil. The rhizome essential oil of N. grandiflora was mostly composed of calarene (9.4%), valerena-4,7(11)-diene (7.1%), nardol A (6.0%), 1(10)-aristolen-9-ol (11.6%), jatamansone (7.9%), valeranal (5.6%), and cis-valerinic acid (5.7%). The chemical composition of N. grandiflora rhizome oil from Nepal is qualitatively very different than those from Indian, Chinese, and Pakistani Nardostachys essential oils. In this study we have evaluated the chemical composition and biological activities of N. grandiflora from Nepal. Additionally, 1(10)-aristolen-9-ol was isolated and the structure determined by NMR, and represents the first report of this compound from N. grandiflora. N. grandiflora rhizome oil showed in-vitro antimicrobial activity against Bacillus cereus, Escherichia coli, and Candida albicans (MIC = 156 μg/mL), as well as in-vitro cytotoxic activity on MCF-7 cells.


2020 ◽  
Vol 16 (4) ◽  
pp. 563-570
Author(s):  
Rania Belabbes ◽  
Imane R. Mami ◽  
Mohammed E.A. Dib ◽  
Kenza Mejdoub ◽  
Boufeldja Tabti ◽  
...  

Background: The essential oils of aromatic plants are increasingly used as new biocontrol alternative agents against microbial strains and insect pests of fruits and vegetables, because of their specificity of biodegradable nature. Objective: This work, treats for the first time the chemical composition, antioxidant, antifungal and insecticidal activities of the essential oils obtained from Echinops spinosus and Carlina vulgaris from Algeria. Methods: The chemical compositions of oils were investigated using GC-FID and GC/MS. Antioxidant activity was assessed using three methods (2,2-diphenyl-1-picrylhydrazyl, Ferric-Reducing Antioxidant Power (FRAP) and β-carotene assay). Fumigation toxicity of E. spinosus and C. vulgaris essential oils was tested against Bactrocera oleae pests of olives. Results: Eighteen and thirteen components representing 95.4 and 97.9% were identified in root essential oils from Echinops spinosus and Carlina vulgaris, respectively. Polyacetylenes were the majority compounds of essential oils. 5 (But-1-yn-3-enyl).2,2'bithiophene and α-terthienyle were highly dominants in the E. spinosus essential oil from the roots (54.4 and 26.3%, respectively). Roots of C. vulgaris produce an essential oil dominated by carlina oxide (33.7%) and 13-methoxy carlina oxide (11.5%). Comparison of the antioxidant activity of E. spinosus essential oil showed more important antioxidant effect than C. vulgaris essential oil and the synthetic antioxidant (BHT). Evaluation of the antifungal activity showed an interesting efficiency of both essential oils against P. expansum and A. niger with EC50s varied from 5 to 14.5 mg/L. C. arvensis essential oil exhibited good larvicidal properties. At the concentration of 325 μL/L air, the oil caused mortality of 100% for Bactrocera Oleae adults after 24 h of exposure. Conclusion: Both essential oils rich to polyacetylenes and polythiophenes.components have shown interesting biological activities, which suggests that plants have the potential to be used as biopesticides and provide an alternative to chemical pesticides.


2020 ◽  
Vol 4 ◽  
Author(s):  
Neilton Antonio Fiusa Araújo ◽  
Rafaela Magalhães Brandão ◽  
Beatriz Meireles Barguil ◽  
Maria das Graças Cardoso ◽  
Moacir Pasqual ◽  
...  

Rose essential oil is rich in compounds widely used by the pharmaceutical and cosmetic industry, due to the biological activities it presents. However, obtaining oil is costly, as the yield per plant is low, which requires several techniques that aim to increase its production. The application of growth-promoting bacteria has been studied for this purpose. Thus, the objective of this work was to select efficient bacteria for production and evaluate their influence on the phytotechnical characteristics and composition of the essential oils of roses. Seven species of bacteria were evaluated for the potential to promote growth in vitro, being tested for nitrogen fixation, phosphate solubilization, protease production and auxin production. From bacteria tested, four were selected and inoculated on rose plants of cultivar Black Prince to evaluate the influence on phytotechnical variables of flower and stem and the oil production. The evaluation of the production of roses was performed through the characteristics of the flowers (size, weight, and diameter of the stem) and floral bud. The essential oils from the inoculated flowers were extracted and evaluated in terms of content, yield, and chemical composition. The application of B. acidiceler, B. subtilis and B. pumilus resulted in flowers with a diameter up to 29% larger. The floral stem was increased by up to 24.5% when B. acidiceler and B. pumilus were used. Meanwhile, the stem diameter was around 41% greater in the presence of B. acidiceler, B. subtilis and in the control. Bacillus pumilus also increased the weight of fresh petals (104%) and essential oil yield (26%), changing the chemical composition of the extracted essential oil. Thus, it is concluded that B. acidiceler, B. pumilus, and B. subtilis improved the phytotechnical characteristics of roses. Among bacteria, B. pumilus increased the essential oil content as well as positively changed the chemical composition of the extracted essential oil.


2020 ◽  
Vol 49 (4) ◽  
pp. 957-965
Author(s):  
Omer Elkiran ◽  
Cumhur Avsar

The chemical composition, antimicrobial and antioxidant properties of the essential oils from the leaves of endemic Thymus leucostomus naturally grown in Turkey were investigated and chemical differences were discussed by means of chemotaxonomy. Twenty-six components were identified representing 98.8% of the oils. The main compounds in the essential oil of T. leucostomus were: o-cymene (30.6%), carvacrol (9.6%), thymol methyl ether (7.2%), limonene (6.8%). Essential oil was screened for their antimicrobial activities against 7 bacteria and 2 yeast species by using disc-diffusion and MIC procedure. The essential oil showed higher effectiveness against all the tested bacteria and yeast. The extract was observed to be much more effective in Gram-positive bacteria (especially, S. aureus ATCC 6538). In vitro antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical was evaluated for the essential oil, and it was found that the essential oil had good antioxidant activity in the range of the IC50= 5.42 ±0.8 μg/ml.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2620 ◽  
Author(s):  
Jane Budel ◽  
Mei Wang ◽  
Vijayasankar Raman ◽  
Jianping Zhao ◽  
Shabana Khan ◽  
...  

This paper provides a comparative account of the essential oil chemical composition and biological activities of five Brazilian species of Baccharis (Asteraceae), namely B. microdonta, B. pauciflosculosa, B. punctulata, B. reticularioides, and B. sphenophylla. The chemical compositions of three species (B. pauciflosculosa, B. reticularioides, and B. sphenophylla) are reported for the first time. Analyses by GC/MS showed notable differences in the essential oil compositions of the five species. α-Pinene was observed in the highest concentration (24.50%) in B. reticularioides. Other major compounds included α-bisabolol (23.63%) in B. punctulata, spathulenol (24.74%) and kongol (22.22%) in B. microdonta, β-pinene (18.33%) and limonene (18.77%) in B. pauciflosculosa, and β-pinene (15.24%), limonene (14.33%), and spathulenol (13.15%) in B. sphenophylla. In vitro analyses for antimalarial, antitrypanosomal, and insecticidal activities were conducted for all of the species. B. microdonta and B. reticularioides showed good antitrypanosomal activities; B. sphenophylla showed insecticidal activities in fumigation bioassay against bed bugs; and B. pauciflosculosa, B. reticularioides, and B. sphenophylla exhibited moderate antimalarial activities. B. microdonta and B. punctulata showed cytotoxicity. The leaves and stems of all five species showed glandular trichomes and ducts as secretory structures. DNA barcoding successfully determined the main DNA sequences of the investigated species and enabled authenticating them.


Author(s):  
Imane Rihab Mami ◽  
Noria Merad-Boussalah ◽  
Mohammed El Amine Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Aim and Objective: Oxidative stress is implicated in the development and progression of many disease. Some of appropriate actions that could be initiated to taken to resolve the problem of these diseases are search for new antioxidant substances isolated from plants. The aims of this study were to study the intraspecies variations of A. verticillata and C. caeruleus essential oils from 8 locations using statistical analysis, the in vitro antioxidant properties of collective essential oils and in combinations. Materials and Methods: The essential oils were analyzed by GC and GC-MS. The intraspecies variations of the essential oil compositions were discussed using principal component analysis (PCA) and cluster analysis (CA). The antioxidant properties were evaluated DPPH-radical scavenging activity and β-carotene bleaching test. Results: The main components of Ammoides verticillata collective essential oil (Coll EO) were thymol (30.5%), carvacrol (23.2%), p-cymene (13.1%), limonene (12.5%) and terpinene-4-ol (12.3%). While roots of Carthamus caeruleus essential oil were dominated by carline oxide (86.2%). The chemical variability allowed the discrimination of two main Groups for both Coll EOs. A direct correlation between the altitudes, climate and the chemical compositions was evidenced. Ammoides verticulata and Carthamus caeruleus Coll Eos showed good antioxidant activity. In binary mixture, the interaction both Coll Eos and between oils rich of thymol and/or carvacrol with carlina oxide produced the best synergistic effects, compared to individual essential oils and the synthetic antioxidant (BHT). Conclusion: Ammoides verticillata and Carthamus caeruleus essential oil blends can be used as a natural food preservative and alternative to chemical antioxidants.


2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


2014 ◽  
Vol 9 (7) ◽  
pp. 668-677 ◽  
Author(s):  
Tatjana Mihajilov-Krstev ◽  
Dragan Radnović ◽  
Dušanka Kitić ◽  
Vesna Jovanović ◽  
Violeta Mitić ◽  
...  

AbstractThe present study investigates the chemical compositions of three Satureja montana L. ssp montana essential oils and correlates chemical variability with biological activities. GC/MS analysis showed that with an increase in altitude (100–500–800 m), a higher content of linalool, terpinen-4-ol and cis-sabinene hydrate was found, while the percentage of phenolic compounds, thymol and carvacrol decreased. Antimicrobial activity of the essential oils was tested against 7 fungal and 23 bacterial strains. The essential oil characterized by the highest content of phenols and alcohols exhibited the highest antimicrobial potential. The correlation analysis showed that the major carriers of the obtained antioxidant activity are oxygenated monoterpenes. All essential oils inhibited human serum cholinesterase activity. High antimicrobial potential, together with moderate antioxidant capacity and strong inhibition of human serum cholinesterase, classifies S. montana essential oil as a natural source of compounds that can be used in the treatment of foodborne and neurological diseases, wound and other infections, as well as for general health improvement.


2018 ◽  
Vol 7 (9) ◽  
pp. 283 ◽  
Author(s):  
Sherif Hassan ◽  
Kateřina Berchová-Bímová ◽  
Miroslava Šudomová ◽  
Milan Malaník ◽  
Karel Šmejkal ◽  
...  

Thymus bovei Benth. (TB) is an important plant in the traditional medicine of the Mediterranean region. This study investigates the health-promoting properties of TB essential oil (TB-EO) for its possible use in clinical practice with regards to its cytotoxic, anti-herpes simplex virus type 2 (HSV-2), and antihypertensive (through inhibition of human angiotensin-converting enzyme; ACE) properties. The phytochemical profile of EO (99.9%) was analyzed by Gas Chromatography with Flame-Ionization Detection (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). In this study, all biological methods were performed at the level of in vitro studies. The results showed that TB-EO exerted remarked cytotoxic properties against human cervical carcinoma cells, colon cancer cells, and lung adenocarcinoma cells with the half-maximal inhibitory concentration (IC50) values of 7.22, 9.30, and 8.62 µg/mL, respectively, in comparison with that of standard anticancer drug cisplatin with IC50 values of 4.24, 5.21, and 5.43 µg/mL, respectively. Fascinatingly, TB-EO showed very weak cytotoxicity on the healthy human fetal lung fibroblast cells with an IC50 value of 118.34 µg/mL compared with that of cisplatin (IC50 = 10.08 µg/mL). TB-EO, its main component geraniol, TB-EO combined with acyclovir (ACV) along with standard ACV, have displayed pronounced inhibitory properties against the replication of HSV-2 with the half-maximal effective concentration (EC50) values of 2.13, 1.92, 0.81 and 1.94 µg/mL, respectively, with corresponding selectivity indices (SI) 98.59, 109.38, 259.26 and 108.25, respectively. TB-EO and geraniol at a concentration of 15 µg/mL showed prominent inhibitory activities against ACE with % of inhibition 95.4% and 92.2%, respectively, compared with that of standard inhibitor captopril (99.8%; 15 µg/mL). Molecular docking studies were performed to unveil the mechanism of action of geraniol as well as structural parameters necessary for anti-HSV-2 activity (through the inhibition of HSV-2 protease) and ACE inhibition. This is the first report on the chemical composition of Egyptian TB-EO along with the above-mentioned biological activities. Our results may be considered as novel findings in the course of a search for new and active anticancer, anti-HSV-2 and antihypertensive agents, and expand the medicinal value of this plant and its phytochemicals in clinical practice.


2020 ◽  
Vol 9 (10) ◽  
pp. e5049108788
Author(s):  
Luciane Neris Cazella ◽  
Herika Line de Marko de Oliveira ◽  
Wanessa de Campos Bortolucci ◽  
Isabelle Luiz Rahal ◽  
Irinéia Paulina Baretta ◽  
...  

Baccharis dracunculifolia, native to Brazil and the main source of “green propolis”, has been reported with several biological activities, and may be a source of bovine tick control substituting synthetic acaricides. Objective: to evaluate the in vitro and ex situ acaricidal activity of B. dracunculifolia leaf and flower essential oils against Rhipicephalus microplus. Methodology: the essential oils were extracted by hydrodistillation and analyzed by a gas chromatography coupled to mass spectrometry; the acaricidal activity of the essential oil was evaluated in vitro against adult females and against the egg hatchability; moreover, the acaricidal activity against tick larvae was evaluated in vitro and ex situ. Results: the major class of the essential oils was oxygenated sesquiterpene (55.1% leaves 50.4% flowers) and the main compounds were (21.5% leaves; 20.6% flowers) and spathulenol (21.8% leaves; 20.3% flowers). The essential oil at 500 mg/mL was effective to control egg hatchability with a reduction of egg laying capacity and decrease of number of adult ticks and larvae. The larvicidal activity of the essential oil had LC99.9 from 35 to 37 mg/mL by probit analysis, and the essential oil from 11 to 14 mg/mL presented 85 to 95% of treatment efficiency in the ex situ test. Conclusion: B. dracunculifolia leaf and flower essential oils are stable and have application potential to control bovine ticks.


Sign in / Sign up

Export Citation Format

Share Document