scholarly journals The Possible Role of the Nitroso-Sulfide Signaling Pathway in the Vasomotoric Effect of Garlic Juice

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 590 ◽  
Author(s):  
Andrea Berenyiova ◽  
Marian Grman ◽  
Anton Misak ◽  
Samuel Golas ◽  
Justina Cuchorova ◽  
...  

The beneficial cardiovascular effects of garlic have been reported in numerous studies. The major bioactive properties of garlic are related to organic sulfides. This study aimed to investigate whether garlic juice works exclusively due to its sulfur compounds or rather via the formation of new products of the nitroso-sulfide signaling pathway. Changes in isometric tension were measured on the precontracted aortic rings of adult normotensive Wistar rats. We evaluated NO-donor (S-nitrosoglutathione, GSNO)-induced vasorelaxation and compare it with effects of hydrogen sulfide (H2S)/GSNO and garlic/GSNO. Incubation with garlic juice increased the maximal GSNO-induced relaxation and markedly changed the character of the relaxant response. Although incubation with an H2S donor enhanced the maximal vasorelaxant response of GSNO, neither the absolute nor the relative relaxation changed over time. The mixture of GSNO with an H2S donor evoked a response similar to GSNO-induced relaxation after incubation with garlic juice. This relaxation of the H2S and GSNO mixture was soluble guanylyl cyclase (sGC) dependent, partially reduced by HNO scavenger and it was adenosine triphosphate-sensitive potassium channels (KATP) independent. In this study, we demonstrate for the first time the suggestion that H2S itself is probably not the crucial bioactive compound of garlic juice but rather potentiates the production of new signaling molecules during the GSNO-H2S interaction.

2021 ◽  
Vol 8 ◽  
Author(s):  
Huan Ren ◽  
Jian-Quan Luo ◽  
Fan Ouyang ◽  
Li Cheng ◽  
Xiao-Ping Chen ◽  
...  

Essential Hypertension (EH) results in the burden of cardiovascular disease (CVD) such as Heart Failure (HF) and Ischemic Stroke (IS). A rapidly emerging field involving the role of Wnt/β-catenin signaling pathway in cardiovascular development and dysfunction has recently drawn extensive attention. In the present study, we conducted a genetic association between genomic variants in Wnt/β-catenin signaling pathway and EH, HF, IS. A total of 95 SNPs in 12 Wnt signaling genes (WNT3A, WNT3, WNT4, DKK1, DKK2, LRP5, LRP6, CTNNB1, APC, FZD1, FRZB, SFRP1) were genotyped in 1,860 participants (440 patients with EH, 535 patients with HF, 421 patients with IS and 464 normal control subjects) using Sequenom MassArray technology. WNT3A rs752107(C > T) was strongly associated with an increased risk of EH, HF and IS. Compared with WNT3A rs752107 CC genotype, the CT genotype carriers had a 48% increased risk of EH (OR = 1.48, 95% CI = 1.12–1.96, P = 0.006), the TT genotype conferred a 139% increased risk of EH (OR = 2.39, 95% CI = 1.32–4.34, P = 0.003). Regarding HF and IS, the risk of HF in the T allele carriers (CT + TT) was nearly increased by 58% (OR = 1.58, 95% CI = 1.22–2.04, P = 4.40 × 10−4) and the risk of IS was increased by 37% (OR = 1.37, 95% CI = 1.04–1.79, P = 0.025). Expression quantitative trait loci (eQTL) analysis indicated that rs752107 C allele corresponded to a significant reduction of WNT3A expression. We described a genetic variant of WNT3A rs752107 in Wnt/β-catenin signaling strongly associated with the risk of EH, HF and IS for the first time.


2003 ◽  
Vol 177 (1) ◽  
pp. 35-44 ◽  
Author(s):  
G Maniere ◽  
E Vanhems ◽  
F Gautron ◽  
JP Delbecque

Previous investigations in the female blowfly Phormia regina have shown that 3-isobutyl-1-methylxanthine (IBMX), a broad spectrum inhibitor of phosphodiesterases (PDEs), fails to mimic the steroidogenic effects of cAMP on ovaries, although it efficiently increases the concentrations of this second messenger. In this study, experiments carried out to clear up this contradiction demonstrated that IBMX, besides its effect on cAMP, also increased cGMP concentrations in blowfly ovary and that these two cyclic nucleotides controlled ovarian steroidogenesis antagonistically. In particular, a selective inhibitor of cGMP-specific PDEs, unlike IBMX, had a very strong negative effect on ovarian steroidogenesis. Moreover, a cGMP analog was able to inhibit steroid biosynthesis in previtellogenic and vitellogenic ovaries, thus affecting basal and acute steroidogenesis respectively. Our observations also demonstrated that cGMP was always present in blowfly ovary, reaching its maximal levels at the end of vitellogenesis, in close correlation with the physiological decrease in ovarian steroidogenesis. Experiments using an inhibitor of protein kinase G clearly indicated that the effects of cGMP were mediated by this enzyme. On the contrary, these effects did not seem to involve cGMP-regulated PDEs or ion channels. Our results also indicated that ovarian cGMP concentrations were not controlled by brain factors, suggesting a probable involvement of paracrine/autocrine factors. Nitric oxide (NO) appeared to be a good candidate for such a control, because an NO donor was able to stimulate ovarian cGMP concentrations and to drastically decrease ovarian ecdysteroid biosynthesis in blowflies. These data thus demonstrate, for the first time in invertebrates, a potent role of cGMP in the negative control of ovarian steroidogenesis and suggest a possible co-regulation with NO.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Zhongyuan Mu ◽  
Hongling Zhang ◽  
Peng Lei

Abstract As a major bioactive compound from grapes, piceatannol (PIC) has been reported to exert anti-atherosclerotic activity in various studies. Nevertheless, the mechanism underlying the effect of piceatannol against atherosclerosis (AS) is elusive. Our study identified miR-200a/Nrf2/GSDMD signaling pathway as critical mediators in the effect of piceatannol on macrophages. In the present study, we confirmed that treatment of piceatannol repressed the oxLDL-induced lipid storage in macrophages. Compared with control group, piceatannol inhibited TG storage and the activity of caspase1. It is noting that in response to oxLDL challenge, piceatannol abated the pyroptosis in RAW264.7 cells, with a decreased expression of caspase1, gasdermin D (GSDMD), IL-18, IL-1β and NLRP3. Moreover, we investigated the role of microRNA (miR)-200a/Nrf2 signaling pathway in the effect of piceatannol. The results declared that after transfection of si-miR-200a or si-Nrf2 plasmids, the effects of piceatannol on macrophages were converted, including lipid storage and pyroptosis. Importantly, si-miR-200a plasmid reduced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), indicating that miR-200a acted as an enhancer of Nrf2 in macrophages. Collectively, our findings demonstrate that piceatannol exerts anti-atherosclerotic activity on RAW264.7 cells by regulating miR-200a/Nrf2/GSDMD signaling. The present study is the first time to identify miR-200a as a candidate target in AS and declared an association between miR-200a and pyroptosis, which provides a novel therapy for the treatment of AS.


1998 ◽  
Vol 275 (4) ◽  
pp. R1025-R1030 ◽  
Author(s):  
Timothy K. Caudill ◽  
Thomas C. Resta ◽  
Nancy L. Kanagy ◽  
Benjimen R. Walker

Chronic hypoxic exposure has been previously demonstrated to attenuate systemic vasoconstrictor activity to a variety of agents. This attenuated responsiveness is observed not only in conscious animals but in isolated vascular preparations as well. Because hypoxia has been documented to increase heme oxygenase (HO) levels and the subsequent production of the vasodilator CO in vitro, we hypothesized that the blunted reactivity observed with chronic hypoxia (CH) may be in part due to increased HO activity. In thoracic aortic rings from CH rats, cumulative dose-response curves to phenylephrine (PE) in the presence of the nitric oxide (NO) synthase inhibitor N ω-nitro-l-arginine (l-NNA) and the HO inhibitor zinc protoporphyrin 9 (ZnPPIX) elicited increased contractility compared with CH rings treated with onlyl-NNA. Similar results were observed in rings incubated overnight with the HO-inducing agent sodium m-arsenite. In contrast, contractile responses in rings from control rats were unaffected by the HO inhibitor. Furthermore, endothelium-denuded rings from either control or CH rats did not exhibit an increase in reactivity to PE following ZnPPIX incubation. ZnPPIX had no effect on relaxant responses to the NO donor S-nitroso- N-penicillamine, suggesting that its actions were specific to HO inhibition. Finally, aortic rings exhibited dose-dependent relaxant responses to exogenous CO that were endothelium independent and blocked by an inhibitor of soluble guanylyl cyclase. The other products of HO enzyme activity, iron and biliverdin, were without effect on vasoreactivity. Thus we conclude that the attenuated vasoreactivity to PE following CH is likely to involve the induction of endothelial HO and the subsequent enhanced production of CO.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 486-486
Author(s):  
Guoying Zhang ◽  
Binggang Xiang ◽  
Radek C. Skoda ◽  
Susan S. Smyth ◽  
Xiaoping Du ◽  
...  

Abstract Abstract 486 The role of intracellular secondary messenger cGMP in platelet activation has been controversial, with both stimulatory and inhibitory roles reported. The platelet cGMP is believed to be predominantly synthesized by soluble guanylyl cyclase (sGC), which is activated by nitric oxide (NO). To specifically determine the role of sGC-dependent cGMP synthesis in platelet function and in vivo thrombosis and hemostasis, we produced mice harboring a “floxed” sGC beta1 allele. In the “floxed” sGC beta1 mice (sGC beta1fl/fl), the exons 7 and 8 of sGC beta1 gene and an inserted Neo cassette were flanked with three LoxP sites. Platelet-specific deletion of sGC beta1fl/fl allele was accomplished through breeding of the sGC beta1fl/fl mice with pf4-Cre recombinase transgenic mice. Immunoblotting showed the complete absence of this protein in sGC beta1fl/fl/Cre platelets. Mice lacking sGC beta1 in platelets appeared to develop normally and had normal blood counts, including platelets. Blood pressure of platelet-specific sGC deficient mice was comparable to that of wild-type littermates. Inactivating the sGC beta1 gene in platelets abolished cGMP production induced by either NO donors or platelet agonists that are known to activate endogenous NO synthesis, confirming that both the platelet agonist-induced and NO donor-induced platelet cGMP production are predominantly mediated by sGC. Platelets lacking sGC exhibit a marked defect in aggregation and secretion in response to low doses of platelet agonists, collagen and thrombin. Importantly, tail-bleeding times were significantly prolonged in the platelet-specific sGC deficient mice compared with the wild-type littermates. In a FeCl3-induced carotid artery thrombosis model, time to occlusive thrombosis was prolonged in the platelet-specific sGC deficient mice, compared to wild type littermates. Thus, the agonist-stimulated sGC activation is important in promoting platelet granule secretion and aggregation. On the other hand, NO donor SNP-induced inhibition of platelet activation was abolished in sGC-deficient platelets. However, at high concentrations (>100μM), SNP inhibited platelet activation in both wild type and sGC deficient mice, indicating that both cGMP-dependent and -independent mechanisms are involved in NO donor-induced inhibition of platelet activation. Together, our data demonstrate that sGC contributes to both agonist-induced platelet activation and NO donor-induced platelet inhibition. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
fengfei lu ◽  
fa jin

Abstract Background:Long noncoding RNAs (lncRNAs) can drive cancer progression. Here, we studied the role of a novel lncRNA, LINC01956, in glioblastoma (GBM). Methods:RT-PCR assay was used to examine LINC01956 expression levels. Colony-formation, MTT, cell-cycle and in-vivo tumorigenesis assays were used to examine the role of LINC01956 in cell growth in vitro and in vivo. Boyden assay was used to examine cell invasion ability in vitro. RNA immunoprecipitation and RNA-protein pull-down assays were used to examine the interaction between LINC01956 and FUS protein.ChIP assay was used to examine HIF1-binding sites in the LINC01956 promoter.Results:The level of LINC01956 was elevated in GBM cell lines and tissues. LINC01956 downregulation suppressed the migration and proliferation of GBM cells. M2 polarization of macrophages induced by exosomes derived from glioma cells overexpressing LINC01956 further accelerated GBM progression. Mechanistically, we found that FUS interacted with both LINC01956 and β-catenin. LINC01956 bound to FUS and reduced its ubiquitination. LINC01956 evoked nuclear translocation of phosphorylated (p)-β-catenin by recruiting FUS. Furthermore, under hypoxic conditions, LINC01956 was regulated by HIF-1α. Conclusion:Taken together, our data revealed for the first time that LINC01956 exerts protumor effects via FUS-dependent activation of the WNT/β-catenin signaling pathway.


Cephalalgia ◽  
2017 ◽  
Vol 38 (8) ◽  
pp. 1471-1484 ◽  
Author(s):  
Manel Ben Aissa ◽  
Alycia F Tipton ◽  
Zachariah Bertels ◽  
Ronak Gandhi ◽  
Laura S Moye ◽  
...  

Background Nitric oxide (NO) has been heavily implicated in migraine. Nitroglycerin is a prototypic NO-donor, and triggers migraine in humans. However, nitroglycerin also induces oxidative/nitrosative stress and is a source of peroxynitrite – factors previously linked with migraine etiology. Soluble guanylyl cyclase (sGC) is the high affinity NO receptor in the body, and the aim of this study was to identify the precise role of sGC in acute and chronic migraine. Methods We developed a novel brain-bioavailable sGC stimulator (VL-102), and tested its hyperalgesic properties in mice. We also determined the effect of VL-102 on c-fos and calcitonin gene related peptide (CGRP) immunoreactivity within the trigeminovascular complex. In addition, we also tested the known sGC inhibitor, ODQ, within the chronic nitroglycerin migraine model. Results VL-102-evoked acute and chronic mechanical cephalic and hind-paw allodynia in a dose-dependent manner, which was blocked by the migraine medications sumatriptan, propranolol, and topiramate. In addition, VL-102 also increased c-fos and CGRP expressing cells within the trigeminovascular complex. Importantly, ODQ completely inhibited acute and chronic hyperalgesia induced by nitroglycerin. ODQ also blocked hyperalgesia already established by chronic nitroglycerin, implicating this pathway in migraine chronicity. Conclusions These results indicate that nitroglycerin causes migraine-related pain through stimulation of the sGC pathway, and that super-activation of this receptor may be an important component for the maintenance of chronic migraine. This work opens the possibility for negative sGC modulators as novel migraine therapies.


Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3670-3679 ◽  
Author(s):  
Guoying Zhang ◽  
Binggang Xiang ◽  
Anping Dong ◽  
Radek C. Skoda ◽  
Alan Daugherty ◽  
...  

AbstractNitric oxide (NO) stimulates cGMP synthesis by activating its intracellular receptor, soluble guanylyl cyclase (sGC). It is a currently prevailing concept that No and cGMP inhibits platelet function. However, the data supporting the inhibitory role of NO/sGC/cGMP in platelets have been obtained either in vitro or using whole body gene deletion that affects vessel wall function. Here we have generated mice with sGC gene deleted only in megakaryocytes and platelets. Using the megakaryocyte- and platelet-specific sGC-deficient mice, we identify a stimulatory role of sGC in platelet activation and in thrombosis in vivo. Deletion of sGC in platelets abolished cGMP production induced by either NO donors or platelet agonists, caused a marked defect in aggregation and attenuated secretion in response to low doses of collagen or thrombin. Importantly, megakaryocyte- and platelet-specific sGC deficient mice showed prolonged tail-bleeding times and impaired FeCl3-induced carotid artery thrombosis in vivo. Interestingly, the inhibitory effect of the NO donor SNP on platelet activation was sGC-dependent only at micromolar concentrations, but sGC-independent at millimolar concentrations. Together, our data demonstrate important roles of sGC in stimulating platelet activation and in vivo thrombosis and hemostasis, and sGC-dependent and -independent inhibition of platelets by NO donors.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Cinzia Antognelli ◽  
Roberta Frosini ◽  
Maria F. Santolla ◽  
Matthew J. Peirce ◽  
Vincenzo N. Talesa

Oleuropein (OP) is a bioactive compound derived from plants of the genus Oleaceae exhibiting antitumor properties in several human cancers, including non-small-cell lung cancer (NSCLC). Recent evidence suggests that OP has proapoptotic effects on NSCLC cells via the mitochondrial apoptotic pathway. However, the exact molecular mechanisms behind the apoptogenic action of OP in NSCLC are still largely unknown. Glyoxalase 2 (Glo2) is an ancient enzyme belonging to the glyoxalase system involved in the detoxification of glycolysis-derived methylglyoxal. However, emerging evidence suggests that Glo2 may have also nonenzymatic roles in some malignant cells. In the present study, we evaluated whether and how Glo2 participated in the proapoptotic effects of OP in NSCLC A549 cells. Our results indicate that OP is able to induce apoptosis in A549 cells through the upregulation of mitochondrial Glo2 (mGlo2), mediated by the superoxide anion and Akt signaling pathway. Moreover, our data shows that the proapoptotic role of mGlo2, observed following OP exposure, occurs via the interaction of mGlo2 with the proapoptotic Bax protein. Conversely, OP does not alter the behavior of nonmalignant human BEAS-2B cells or mGlo2 expression, thus suggesting a specific anticancer role for this bioactive compound in NSCLC. Our data identify a novel pathway through which OP exerts a proapoptotic effect in NSCLC and suggest, for the first time, a novel, nonenzymatic antiapoptotic role for this ancient enzyme in NSCLC.


2006 ◽  
Vol 175 (4S) ◽  
pp. 95-95
Author(s):  
Raymond R. Rackley ◽  
Mei Kuang ◽  
Ashwin A. Vaze ◽  
Joseph Abdelmalak ◽  
Sandip P. Vasavada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document