scholarly journals Sterically Stabilised Polymeric Mesoporous Silica Nanoparticles Improve Doxorubicin Efficiency: Tailored Cancer Therapy

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 742 ◽  
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

The fruition, commercialisation and clinical application combining nano-engineering, nanomedicine and material science for utilisation in drug delivery is becoming a reality. The successful integration of nanomaterial in nanotherapeutics requires their critical development to ensure physiological and biological compatibility. Mesoporous silica nanoparticles (MSNs) are attractive nanocarriers due to their biodegradable, biocompatible, and relative malleable porous frameworks that can be functionalized for enhanced targeting and delivery in a variety of disease models. The optimal formulation of an MSN with polyethylene glycol (2% and 5%) and chitosan was undertaken, to produce sterically stabilized, hydrophilic MSNs, capable of efficient loading and delivery of the hydrophobic anti-neoplastic drug, doxorubicin (DOX). The pH-sensitive release kinetics of DOX, together with the anticancer, apoptosis and cell-cycle activities of DOX-loaded MSNs in selected cancer cell lines were evaluated. MSNs of 36–60 nm in size, with a pore diameter of 9.8 nm, and a cumulative surface area of 710.36 m2/g were produced. The 2% pegylated MSN formulation (PCMSN) had the highest DOX loading capacity (0.98 mgdox/mgmsn), and a sustained release profile over 72 h. Pegylated-drug nanoconjugates were effective at a concentration range between 20–50 μg/mL, inducing apoptosis in cancer cells, and affirming their potential as effective drug delivery vehicles.

2019 ◽  
Vol 19 (4) ◽  
pp. 285-295 ◽  
Author(s):  
Xiaohui Pu ◽  
Jia Li ◽  
Peng Qiao ◽  
Mengmeng Li ◽  
Haiyan Wang ◽  
...  

Background: With the development of nanotechnology, nanocarrier has widely been applied in such fields as drug delivery, diagnostic and medical imaging and engineering in recent years. Among all of the available nanocarriers, mesoporous silica nanoparticles (MSNs) have become a hot issue because of their unique properties, such as large surface area and voidage, tunable drug loading capacity and release kinetics, good biosafety and easily modified surface. Objective: We described the most recent progress in silica-assisted drug delivery and biomedical applications according to different types of Cargo in order to allow researchers to quickly learn about the advance in this field. Methods: Information has been collected from the recently published literature available mainly through Title or Abstract search in SpringerLink and PubMed database. Special emphasis is on the literature available during 2008-2017. Results: In this review, the major research advances of MSNs on the drug delivery and biomedical applications were summarized. The significant advantages of MSNs have also been listed. It was found that the several significant challenges need to be addressed and investigated to further advance the applications of these structurally defined nanomaterials. Conclusion: Through approaching this review, the researchers can be aware of many new synthetic methods, smart designs proposed in the recent year and remaining questions of MSNs at present.


2020 ◽  
Vol 8 (10) ◽  
pp. 2096-2106 ◽  
Author(s):  
Eun-Bi Lim ◽  
Tran Anh Vy ◽  
Sang-Wha Lee

Multifunctional mesoporous silica nanoparticles (MSNs) can confer dynamically varied release kinetics depending on the intermolecular interactions between model drugs and functional decorations on the MSNs.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ahmed Abu-Dief ◽  
Mosa Alsehli ◽  
Abdullah Al-Enizi ◽  
Ayman Nafady

: Nanotechnology provides the means to design and fabricate delivery vehicles capable of overcoming physiologically imposed obstacles and undesirable side effects of systemic drug delivery. This protocol allows maximal targeting effectiveness and therefore enhances therapeutic efficiency. In recent years, mesoporous silica nanoparticles (MSNPs) have sparked interest in the nanomedicine research community, particularly for their promising applications in cancer treatment. The intrinsic physio-chemical stability, facile functionalization, high surface area, low toxicity, and great loading capacity for a wide range of chemotherapeutic agents make MSNPs very appealing candidates for controllable drug delivery systems. Importantly, the peculiar nanostructures of MSNPs enabled them to serve as an effective drug, gene, protein, and antigen delivery vehicle for a variety of therapeutic regimens. For these reasons, in this review article, we underscore the recent progress in the design and synthesis of MSNPs and the parameters influencing their characteristic features and activities. In addition, the process of absorption, dissemination, and secretion by injection or oral management of MSNPs are also discussed, as they are key directions for the potential utilization of MSNPs. Factors influencing the in vivo fate of MSNPs will also be highlighted, with the main focus on particle size, morphology, porosity, surface functionality, and oxidation. Given that combining other functional materials with MSNPs may increase their biological compatibility, monitor drug discharge, or improve absorption by tumor cells coated MSNPs; these aspects are also covered and discussed herein.


2017 ◽  
Vol 5 (7) ◽  
pp. 1339-1352 ◽  
Author(s):  
Jianhua Zhu ◽  
Yimin Niu ◽  
Yang Li ◽  
Yaxiang Gong ◽  
Huihui Shi ◽  
...  

In the past decade, stimuli-responsive drug delivery vehicles based on surface-functionalized mesoporous silica nanoparticles have attracted intense interest as a new type of drug carrier.


2021 ◽  
Vol 11 (13) ◽  
pp. 6121
Author(s):  
Candace M. Day ◽  
Martin J. Sweetman ◽  
Yunmei Song ◽  
Sally E. Plush ◽  
Sanjay Garg

Functionalized nanoparticles have played a major role in the field of targeted therapy, owing to their ability to control the release and for the selective delivery of entrapped materials to tumours. In this work, we described the loading capacity and in vitro release kinetics of mesoporous silica nanoparticles (MSNs), functionalized with Poly-L-Histidine and Tamoxifen. The model drug Doxorubicin (DOX) was successfully encapsulated into MSN-based systems, using the technique of solvent immersion. A post-surface grafting loading method was investigated on functionalized systems, with DOX loading content determined using HPLC. Dialysis bag diffusion was employed to investigate the release kinetics of DOX-loaded-systems at pH 7.4 and 5. The amount of DOX released from native MSNs systems over a 72 h period at pH 5 was approximately 40%; and at pH 7.4 ≈ 30%. A moderate pH dependent release behaviour was observed with both our functionalized systems: DOX@MSN-PLH and DOX@MSN-PLH-TAM; with approximately 5% of DOX released from DOX@MSN-PLH-TAM at pH 7.4 and about 9% released at pH 7.4 over 72 h. The maximal cumulated release of DOX molecules from DOX@MSN-PLH after 72 h was ≈ 18% at pH 7.4 and ≈ 23% at pH 5, respectively. The outcome of this work offers a promising contribution towards building future stimuli-responsive nano-drug delivery systems.


2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


Sign in / Sign up

Export Citation Format

Share Document