scholarly journals Interactions of Tea-Derived Catechin Gallates with Bacterial Pathogens

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1986
Author(s):  
Peter W. Taylor

Green tea-derived galloylated catechins have weak direct antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens and are able to phenotypically transform, at moderate concentrations, methicillin-resistant Staphylococcus aureus (MRSA) clonal pathogens from full β-lactam resistance (minimum inhibitory concentration 256–512 mg/L) to complete susceptibility (~1 mg/L). Reversible conversion to susceptibility follows intercalation of these compounds into the bacterial cytoplasmic membrane, eliciting dispersal of the proteins associated with continued cell wall peptidoglycan synthesis in the presence of β-lactam antibiotics. The molecules penetrate deep within the hydrophobic core of the lipid palisade to force a reconfiguration of cytoplasmic membrane architecture. The catechin gallate-induced staphylococcal phenotype is complex, reflecting perturbation of an essential bacterial organelle, and includes prevention and inhibition of biofilm formation, disruption of secretion of virulence-related proteins, dissipation of halotolerance, cell wall thickening and cell aggregation and poor separation of daughter cells during cell division. These features are associated with the reduction of capacity of potential pathogens to cause lethal, difficult-to-treat infections and could, in combination with β-lactam agents that have lost therapeutic efficacy due to the emergence of antibiotic resistance, form the basis of a new approach to the treatment of staphylococcal infections.

2006 ◽  
Vol 50 (2) ◽  
pp. 428-438 ◽  
Author(s):  
Longzhu Cui ◽  
Akira Iwamoto ◽  
Jian-Qi Lian ◽  
Hui-min Neoh ◽  
Toshiki Maruyama ◽  
...  

ABSTRACT As an aggressive pathogen, Staphylococcus aureus poses a significant public health threat and is becoming increasingly resistant to currently available antibiotics, including vancomycin, the drug of last resort for gram-positive bacterial infections. S. aureus with intermediate levels of resistance to vancomycin (vancomycin-intermediate S. aureus [VISA]) was first identified in 1996. The resistance mechanism of VISA, however, has not yet been clarified. We have previously shown that cell wall thickening is a common feature of VISA, and we have proposed that a thickened cell wall is a phenotypic determinant for vancomycin resistance in VISA (L. Cui, X. Ma, K. Sato, et al., J. Clin. Microbiol. 41:5-14, 2003). Here we show the occurrence of an anomalous diffusion of vancomycin through the VISA cell wall, which is caused by clogging of the cell wall with vancomycin itself. A series of experiments demonstrates that the thickened cell wall of VISA could protect ongoing peptidoglycan biosynthesis in the cytoplasmic membrane from vancomycin inhibition, allowing the cells to continue producing nascent cell wall peptidoglycan and thus making the cells resistant to vancomycin. We conclude that the cooperative effect of the clogging and cell wall thickening enables VISA to prevent vancomycin from reaching its true target in the cytoplasmic membrane, exhibiting a new class of antibiotic resistance in gram-positive pathogens.


2013 ◽  
Vol 13 (1) ◽  
pp. 24 ◽  
Author(s):  
Bertrand Delaunois ◽  
Thomas Colby ◽  
Nicolas Belloy ◽  
Alexandra Conreux ◽  
Anne Harzen ◽  
...  

1972 ◽  
Vol 18 (6) ◽  
pp. 909-915 ◽  
Author(s):  
A. P. Singh ◽  
K.-J. Cheng ◽  
J. W. Costerton ◽  
E. S. Idziak ◽  
J. M. Ingram

The site of the cell barrier to actinomycin-D uptake was studied using a wild-type Escherichia coli strain P and its cell envelope-defective filamentous mutants, strains 6γ and 12γ, both of which 'leak' β-galactosidase and alkaline phosphatase into the medium during growth indicating both membrane and cell-wall defects. Actinomycin-D entered the cells of these two mutant strains as evidenced by the inhibition of both 14C-uracil incorporation and synthesis of the induced β-galactosidase system. Under similar conditions, no inhibition occurred in the wild-type strain and its sucrose-lysozyme prepared spheroplasts. Actinomycin-D did, however, inhibit the above-mentioned systems in the wild-type sucrose-lysozyme spheroplasts prepared in the presence of 2 mM EDTA. The experimental data indicate that although the cell wall may act as a primary barrier or sieve to actinomycin-D, the cytoplasmic membrane should be considered the final and determinative barrier to this antibiotic.


2009 ◽  
Vol 50 (3) ◽  
pp. 572-583 ◽  
Author(s):  
Takeaki Kubo ◽  
Shinsuke Kaida ◽  
Jun Abe ◽  
Tatsuaki Saito ◽  
Hideya Fukuzawa ◽  
...  

1967 ◽  
Vol 34 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Jesse E. Sisken ◽  
Elaina Wilkes

p-Fluorophenylalanine (PFPA), an analogue of phenylalanine which may be incorporated into proteins, increases the duration of mitosis. In the present experiments, based upon quantitative analyses of time-lapse cinemicrographic films, brief treatments of cells with PFPA are shown to affect the duration of metaphase in only those cells which enter division during or shortly after treatment. The offspring of cells with prolonged metaphases also tend to have prolonged metaphases. Analyses of the kinetics of the appearance of prolonged metaphases indicate that some protein specifically associated with mitosis is synthesized primarily during a period which corresponds closely to G2. The manner in which the defect is passed on to daughter cells indicates that the protein involved is conserved and reutilized by daughter cells for their subsequent divisions. Comparable experiments performed with low concentrations of puromycin indicate that the major effect of PFPA is due to its incorporation into protein rather than its ability to inhibit protein synthesis. The fact that puromycin-induced effects can also be passed on to daughter cells is interpreted to mean that cells make only specific amounts of some mitosis-associated proteins and that if a cell "inherits" a deficiency in such protein it is not able to compensate for the deficiency.


Sign in / Sign up

Export Citation Format

Share Document