scholarly journals Lectins from the Edible Mushroom Agaricus bisporus and Their Therapeutic Potentials

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2368
Author(s):  
Wangsa Tirta Ismaya ◽  
Raymond Rubianto Tjandrawinata ◽  
Heni Rachmawati

The mushroom Agaricus bisporus secretes biologically active compounds and proteins with benefits for human health. Most reported proteins from A. bisporus are tyrosinases and lectins. Lectins are of therapeutic or pharmaceutical interest. To date, only limited information is available on A. bisporus lectins and lectin-like proteins. No therapeutic products derived from A. bisporus lectin (ABL) are available on the market despite its extensive exploration. Recently, A. bisporus mannose-binding protein (Abmb) was discovered. Its discovery enriches the information and increases the interest in proteins with therapeutic potential from this mushroom. Furthermore, the A. bisporus genome reveals the possible occurrence of other lectins in this mushroom that may also have therapeutic potential. Most of these putative lectins belong to the same lectin groups as ABL and Abmb. Their relationship is discussed. Particular attention is addressed to ABL and Abmb, which have been explored for their potential in medicinal or pharmaceutical applications. ABL and Abmb have anti-proliferative activities toward cancer cells and a stimulatory effect on the immune system. Possible scenarios for their use in therapy and modification are also presented.

2003 ◽  
Vol 371 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Albert M. WU ◽  
June H. WU ◽  
Anthony HERP ◽  
Jia-Hau LIU

Agaricus bisporus agglutinin (ABA) isolated from edible mushroom has a potent anti-proliferative effect on malignant colon cells with considerable therapeutic potential as an anti-neoplastic agent. Since previous studies on the structural requirement for binding were limited to molecular or submolecular levels of Galβ1-3GalNAc (T; Thomsen–Friedenreich disaccharide glycotope; where Gal represents d-galactopyranose and GalNAc represents 2-acetamido-2-deoxy-d-galactopyranose) and its derivatives, the binding properties of ABA were further investigated using our collection of glycans by enzyme-linked lectinosorbent assay and lectin–glycan inhibition assay. The results indicate that polyvalent Galβ1-related glycotopes, GalNAcα1-Ser/Thr (Tn), and their cryptoforms, are the most potent factor for ABA binding. They were up to 5.5×105 and 4.7×106 times more active than monomeric T and GalNAc respectively. The affinity of ABA for ligands can be ranked as: multivalent Tα (Galβ1-3GalNAcα1-), Tn and I/II (Galβ1-3GlcNac/Galβ1-4GlcNAc, where GlcNAc represents 2-acetamido-2-deoxy-d-glucopyranose)>>>>monomeric Tα and Tn>I>>GalNAc>>>II, L (Galβ1-4Glc, where Glc represents d-glucopyranose) and Gal (inactive). These specific binding features of ABA establish the importance of affinity enhancement by high-density polyvalent (versus multiantennary I/II) glycotopes and facilitate our understanding of the lectin receptor recognition events relevant to its biological activities.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1643
Author(s):  
Trupti Trivedi ◽  
Gabriel M. Pagnotti ◽  
Theresa A. Guise ◽  
Khalid S. Mohammad

Complications associated with advanced cancer are a major clinical challenge and, if associated with bone metastases, worsen the prognosis and compromise the survival of the patients. Breast and prostate cancer cells exhibit a high propensity to metastasize to bone. The bone microenvironment is unique, providing fertile soil for cancer cell propagation, while mineralized bone matrices store potent growth factors and cytokines. Biologically active transforming growth factor β (TGF-β), one of the most abundant growth factors, is released following tumor-induced osteoclastic bone resorption. TGF-β promotes tumor cell secretion of factors that accelerate bone loss and fuel tumor cells to colonize. Thus, TGF-β is critical for driving the feed-forward vicious cycle of tumor growth in bone. Further, TGF-β promotes epithelial-mesenchymal transition (EMT), increasing cell invasiveness, angiogenesis, and metastatic progression. Emerging evidence shows TGF-β suppresses immune responses, enabling opportunistic cancer cells to escape immune checkpoints and promote bone metastases. Blocking TGF-β signaling pathways could disrupt the vicious cycle, revert EMT, and enhance immune response. However, TGF-β’s dual role as both tumor suppressor and enhancer presents a significant challenge in developing therapeutics that target TGF-β signaling. This review presents TGF-β’s role in cancer progression and bone metastases, while highlighting current perspectives on the therapeutic potential of targeting TGF-β pathways.


2019 ◽  
Vol 519 (4) ◽  
pp. 773-776 ◽  
Author(s):  
Najwa Nabila ◽  
Vincencius F. Meidianto ◽  
Raymond R. Tjandrawinata ◽  
Heni Rachmawati ◽  
Wangsa T. Ismaya

2019 ◽  
Vol 515 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Heni Rachmawati ◽  
Syaripah Sundari ◽  
Najwa Nabila ◽  
Olivia M. Tandrasasmita ◽  
Riezki Amalia ◽  
...  

2022 ◽  
Vol 23 ◽  
Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

Abstract: Cancer is now also reflected as a disease of the tumor microenvironment, primarily supposed to be a decontrolled genetic and cellular expression disease. Over the past two decades, significant and rapid progress has been made in recognizing the dynamics of the tumor's microenvironment and its contribution to influencing the response to various anti-cancer therapies and drugs. Modulations in the tumor microenvironment and immune checkpoint blockade are interesting in cancer immunotherapy and drug targets. Simultaneously, the immunotherapeutic strategy can be done by modulating the immune regulatory pathway; however, the tumor microenvironment plays an essential role in suppressing the antitumor's immunity by its substantial heterogeneity. Hypoxia inducible factor (HIF) is a significant contributor to solid tumor heterogeneity and a key stressor in the tumor microenvironment to drive adaptations to prevent immune surveillance. Checkpoint inhibitors here halt the ability of cancer cells to stop the immune system from activating, and in turn, amplify your body's immune system to help destroy cancer cells. Common checkpoints that these inhibitors affect are the PD-1/PD-L1 and CTLA-4 pathways and important drugs involved are Ipilimumab and Nivolumab, mainly along with other drugs in this group. Targeting the hypoxic tumor microenvironment may provide a novel immunotherapy strategy, break down traditional cancer therapy resistance, and build the framework for personalized precision medicine and cancer drug targets. We hope that this knowledge can provide insight into the therapeutic potential of targeting Hypoxia and help to develop novel combination approaches of cancer drugs to increase the effectiveness of existing cancer therapies, including immunotherapy.


2020 ◽  
Vol 527 (4) ◽  
pp. 1027-1032 ◽  
Author(s):  
Wangsa T. Ismaya ◽  
Raymond R. Tjandrawinata ◽  
Bauke W. Dijkstra ◽  
Jaap J. Beintema ◽  
Najwa Nabila ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
pp. 262-269 ◽  
Author(s):  
Yanina Ditamo ◽  
Lucia L. Rupil ◽  
Victor G. Sendra ◽  
Gustavo A. Nores ◽  
German A. Roth ◽  
...  

The intake of Agaricus bisporus lectin from edible mushroom modulates immune system reducing innate and adaptive responses.


2002 ◽  
Vol 2002 ◽  
pp. 153-153
Author(s):  
H. Fazaeli ◽  
A.R. Talebian Masoodi

Since last decades, much interest has been evidenced for bioconversion of lignocellulosic materials such as production of edible mushroom. In Iran, the mushroom industry has been expanded during the last 20 years and currently more than 50000 tons of mushroom compost is produced annually by aerobic fermentation system. The compost remained after cropping of mushroom constitutes a potential pollutant and its disposal increases the production cost. This waste material is usually rich of microorganisms and extra cellular enzymes (Ball and Jacksa, 1995) and contains a high level of nitrogen, calcium, phosphorus and trace elements and more degradable than the original straw in the rumen (Zadrazil, 1997). However, there are limited information regarding the nutritive value and utilisation of the mushroom spent straw in animal nutrition. This experiment was conducted to study the nutritive value and acceptability of the Agaricus bisporus mushroom spent wheat straw, obtained from bag system mushroom growing in sheep nutrition.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Sign in / Sign up

Export Citation Format

Share Document