Directing hypoxic tumor microenvironment and HIF to illuminate cancer immunotherapy's existing prospects and challenges in drug targets

2022 ◽  
Vol 23 ◽  
Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

Abstract: Cancer is now also reflected as a disease of the tumor microenvironment, primarily supposed to be a decontrolled genetic and cellular expression disease. Over the past two decades, significant and rapid progress has been made in recognizing the dynamics of the tumor's microenvironment and its contribution to influencing the response to various anti-cancer therapies and drugs. Modulations in the tumor microenvironment and immune checkpoint blockade are interesting in cancer immunotherapy and drug targets. Simultaneously, the immunotherapeutic strategy can be done by modulating the immune regulatory pathway; however, the tumor microenvironment plays an essential role in suppressing the antitumor's immunity by its substantial heterogeneity. Hypoxia inducible factor (HIF) is a significant contributor to solid tumor heterogeneity and a key stressor in the tumor microenvironment to drive adaptations to prevent immune surveillance. Checkpoint inhibitors here halt the ability of cancer cells to stop the immune system from activating, and in turn, amplify your body's immune system to help destroy cancer cells. Common checkpoints that these inhibitors affect are the PD-1/PD-L1 and CTLA-4 pathways and important drugs involved are Ipilimumab and Nivolumab, mainly along with other drugs in this group. Targeting the hypoxic tumor microenvironment may provide a novel immunotherapy strategy, break down traditional cancer therapy resistance, and build the framework for personalized precision medicine and cancer drug targets. We hope that this knowledge can provide insight into the therapeutic potential of targeting Hypoxia and help to develop novel combination approaches of cancer drugs to increase the effectiveness of existing cancer therapies, including immunotherapy.

2014 ◽  
Vol 7 (3) ◽  
pp. 153-160 ◽  
Author(s):  
Muhammad Zaeem Noman ◽  
Yosra Messai ◽  
Jane Muret ◽  
Meriem Hasmim ◽  
Salem Chouaib

2021 ◽  
Vol 22 (12) ◽  
pp. 6492
Author(s):  
Paola Giussani ◽  
Alessandro Prinetti ◽  
Cristina Tringali

Immunotherapy is now considered an innovative and strong strategy to beat metastatic, drug-resistant, or relapsing tumours. It is based on the manipulation of several mechanisms involved in the complex interplay between cancer cells and immune system that culminates in a form of immune-tolerance of tumour cells, favouring their expansion. Current immunotherapies are devoted enforcing the immune response against cancer cells and are represented by approaches employing vaccines, monoclonal antibodies, interleukins, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cells. Despite the undoubted potency of these treatments in some malignancies, many issues are being investigated to amplify the potential of application and to avoid side effects. In this review, we discuss how sphingolipids are involved in interactions between cancer cells and the immune system and how knowledge in this topic could be employed to enhance the efficacy of different immunotherapy approaches. In particular, we explore the following aspects: how sphingolipids are pivotal components of plasma membranes and could modulate the functionality of surface receptors expressed also by immune cells and thus their functionality; how sphingolipids are related to the release of bioactive mediators, sphingosine 1-phosphate, and ceramide that could significantly affect lymphocyte egress and migration toward the tumour milieu, in addition regulating key pathways needed to activate immune cells; given the renowned capability of altering sphingolipid expression and metabolism shown by cancer cells, how it is possible to employ sphingolipids as antigen targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengguo Wu ◽  
Shang Li ◽  
Xiao Zhu

Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body’s normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.


2019 ◽  
Author(s):  
Wenfa Ng

The immune checkpoint plays an important role in keeping immune cells in check for protecting tissues and organs from attack by the body’s own immune system. Similar concepts also apply in how cancer cells managed to fool immune cells through the surface display of particular antigens that mimic those exhibited by normal body cells. Specifically, cancer cells display antigens that bind to receptors on immune cells that subsequently prevent an attack on the cancer cells. Such binding between cancer antigens and immune cell receptors can be prevented through the use of checkpoint inhibitors antibodies specific for particular receptors on immune cells; thereby, unleashing immune cells to mount an immune response against cancer cells. While demonstrating good remissions in many patients where tumours shrunk substantially after administration of checkpoint inhibitors, cases exist where an overactivated immune system cause harm to organs and tissues culminating in multiple organ failure. Analysis of such toxicity effects of checkpoint inhibitors revealed that generic nature of targeted immune receptor plays a pivotal role in determining extent of side effects. Specifically, if the target immune receptor participates in checkpoints that prevent immune cells from attacking host cells, unleashing such receptors in cancer therapy may have untoward effects on patient’s health. Hence, the goal should be the selection of immune cell receptor specific to cancer cell antigens and which does not bind antigens or ligands displayed by the body’s cells. Such receptors would provide ideal targets for the development of checkpoint inhibitor antibodies for unleashing immune cells against cancer cells. To search for non-generic receptors that bind cancer cell antigens only, a combined computational and experimental approach could be used where ensemble of surface antigens on cancer cells and available receptors on immune cells could be profiled by biochemical assays. Downstream purification of ligands and receptors would provide for both structural elucidation and amino acid sequencing useful for bioinformatic search of homologous sequences. Knowledge of the antigens’ and receptors’ structures and amino acid sequence would subsequently serve as inputs to computational algorithms that models molecular docking events between receptor and antigen. This paves the way for heterologous expression of putative ligand and receptor in cell lines cultured in co-culture format for assessing binding between ligand and receptor, and more importantly, its physiological effects. Ability of immune receptor to bind to ligands on normal cells could also be assessed. Similar co-culture studies could be conducted with cancer cells and different immune cell types to check for reproducibility of observed effect in cell lines. Finally, antibodies could be raised for candidate receptors whose inhibition would not result in systemic attack of immune cells on host cells.


2020 ◽  
Vol 21 (19) ◽  
pp. 7345 ◽  
Author(s):  
Mohamed Zakaria Nassef ◽  
Daniela Melnik ◽  
Sascha Kopp ◽  
Jayashree Sahana ◽  
Manfred Infanger ◽  
...  

Breast cancer is the leading cause of cancer death in females. The incidence has risen dramatically during recent decades. Dismissed as an “unsolved problem of the last century”, breast cancer still represents a health burden with no effective solution identified so far. Microgravity (µg) research might be an unusual method to combat the disease, but cancer biologists decided to harness the power of µg as an exceptional method to increase efficacy and precision of future breast cancer therapies. Numerous studies have indicated that µg has a great impact on cancer cells; by influencing proliferation, survival, and migration, it shifts breast cancer cells toward a less aggressive phenotype. In addition, through the de novo generation of tumor spheroids, µg research provides a reliable in vitro 3D tumor model for preclinical cancer drug development and to study various processes of cancer progression. In summary, µg has become an important tool in understanding and influencing breast cancer biology.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1539 ◽  
Author(s):  
Peter Ping Lin

Hematogenous and lymphogenous cancer metastases are significantly impacted by tumor neovascularization, which predominantly consists of blood vessel-relevant angiogenesis, vasculogenesis, vasculogenic mimicry, and lymphatic vessel-related lymphangiogenesis. Among the endothelial cells that make up the lining of tumor vasculature, a majority of them are tumor-derived endothelial cells (TECs), exhibiting cytogenetic abnormalities of aneuploid chromosomes. Aneuploid TECs are generated from “cancerization of stromal endothelial cells” and “endothelialization of carcinoma cells” in the hypoxic tumor microenvironment. Both processes crucially engage the hypoxia-triggered epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT). Compared to the cancerization process, endothelialization of cancer cells, which comprises the fusion of tumor cells with endothelial cells and transdifferentiation of cancer cells into TECs, is the dominant pathway. Tumor-derived endothelial cells, possessing the dual properties of cancerous malignancy and endothelial vascularization ability, are thus the endothelialized cancer cells. Circulating tumor-derived endothelial cells (CTECs) are TECs shed into the peripheral circulation. Aneuploid CD31+ CTECs, together with their counterpart CD31- circulating tumor cells (CTCs), constitute a unique pair of cellular circulating tumor biomarkers. This review discusses a proposed cascaded framework that focuses on the origins of TECs and CTECs in the hypoxic tumor microenvironment and their clinical implications for tumorigenesis, neovascularization, disease progression, and cancer metastasis. Aneuploid CTECs, harboring hybridized properties of malignancy, vascularization and motility, may serve as a unique target for developing a novel metastasis blockade cancer therapy.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Chao Li ◽  
Adilson Fonseca Teixeira ◽  
Hong-Jian Zhu ◽  
Peter ten Dijke

AbstractTo identify novel cancer therapies, the tumor microenvironment (TME) has received a lot of attention in recent years in particular with the advent of clinical successes achieved by targeting immune checkpoint inhibitors (ICIs). The TME consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts (CAFs), which communicate with cancer cells and each other during tumor progression. CAFs are a dominant and heterogeneous cell type within the TME with a pivotal role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis and chemotherapy resistance. CAFs mediate their effects in part by remodeling the ECM and by secreting soluble factors and extracellular vesicles. Exosomes are a subtype of extracellular vesicles (EVs), which contain various biomolecules such as nucleic acids, lipids, and proteins. The biomolecules in exosomes can be transmitted from one to another cell, and thereby affect the behavior of the receiving cell. As exosomes are also present in circulation, their contents can also be explored as biomarkers for the diagnosis and prognosis of cancer patients. In this review, we concentrate on the role of CAFs-derived exosomes in the communication between CAFs and cancer cells and other cells of the TME. First, we introduce the multiple roles of CAFs in tumorigenesis. Thereafter, we discuss the ways CAFs communicate with cancer cells and interplay with other cells of the TME, and focus in particular on the role of exosomes. Then, we elaborate on the mechanisms by which CAFs-derived exosomes contribute to cancer progression, as well as and the clinical impact of exosomes. We conclude by discussing aspects of exosomes that deserve further investigation, including emerging insights into making treatment with immune checkpoint inhibitor blockade more efficient.


2019 ◽  
Author(s):  
Wenfa Ng

The immune checkpoint plays an important role in keeping immune cells in check for protecting tissues and organs from attack by the body’s own immune system. Similar concepts also apply in how cancer cells managed to fool immune cells through the surface display of particular antigens that mimic those exhibited by normal body cells. Specifically, cancer cells display antigens that bind to receptors on immune cells that subsequently prevent an attack on the cancer cells. Such binding between cancer antigens and immune cell receptors can be prevented through the use of checkpoint inhibitors antibodies specific for particular receptors on immune cells; thereby, unleashing immune cells to mount an immune response against cancer cells. While demonstrating good remissions in many patients where tumours shrunk substantially after administration of checkpoint inhibitors, cases exist where an overactivated immune system cause harm to organs and tissues culminating in multiple organ failure. Analysis of such toxicity effects of checkpoint inhibitors revealed that generic nature of targeted immune receptor plays a pivotal role in determining extent of side effects. Specifically, if the target immune receptor participates in checkpoints that prevent immune cells from attacking host cells, unleashing such receptors in cancer therapy may have untoward effects on patient’s health. Hence, the goal should be the selection of immune cell receptor specific to cancer cell antigens and which does not bind antigens or ligands displayed by the body’s cells. Such receptors would provide ideal targets for the development of checkpoint inhibitor antibodies for unleashing immune cells against cancer cells. To search for non-generic receptors that bind cancer cell antigens only, a combined computational and experimental approach could be used where ensemble of surface antigens on cancer cells and available receptors on immune cells could be profiled by biochemical assays. Downstream purification of ligands and receptors would provide for both structural elucidation and amino acid sequencing useful for bioinformatic search of homologous sequences. Knowledge of the antigens’ and receptors’ structures and amino acid sequence would subsequently serve as inputs to computational algorithms that models molecular docking events between receptor and antigen. This paves the way for heterologous expression of putative ligand and receptor in cell lines cultured in co-culture format for assessing binding between ligand and receptor, and more importantly, its physiological effects. Ability of immune receptor to bind to ligands on normal cells could also be assessed. Similar co-culture studies could be conducted with cancer cells and different immune cell types to check for reproducibility of observed effect in cell lines. Finally, antibodies could be raised for candidate receptors whose inhibition would not result in systemic attack of immune cells on host cells.


2018 ◽  
Vol 315 (6) ◽  
pp. R1072-R1084 ◽  
Author(s):  
Luana Schito

Hypoxia (low O2) is a ubiquitous microenvironmental factor promoting cancer progression, metastasis, and mortality, owing to the ability of cancer cells to co-opt physiological angiogenic responses. Notwithstanding, the pathophysiological induction of angiogenesis results in an abnormal tumor vasculature, further aggravating hypoxia in a feedforward loop that limits the efficacy of molecular targeted therapies. Recent studies suggest that, besides their canonical roles, angiogenic factors promote a panoply of immunosuppressive effects in the tumor microenvironment. Therefore, intratumoral hypoxia emerges as a hitherto unrecognized mechanism evolutionarily repurposing angiogenic molecules as (patho)physiological immunomodulators. On the other hand, antiangiogenic therapies could be aimed at impeding both tumor growth and immunotolerance toward cancer cells, a beneficial effect that can be countered if hypoxia signaling pathways are left unchecked, leading to therapeutic failure. This review summarizes evidence supporting the hypothesis that hypoxia acts as a common pathophysiological mechanism of resistance to immunotherapeutic and antiangiogenic agents while proposing potential strategies to curtail resistance and mortality in patients bearing solid malignancies.


Bionatura ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 942-947
Author(s):  
Camila Lissett Velastegui Gamboa ◽  
Dayanara Lissette Yánez Arcos

Lung cancer is a disease difficult to treat and with low survival rates, especially non-smaller cell lung cancer (NSCLC). To treat cancer in advanced stages, new methods had arisen like immunotherapy. Pembrolizumab and nivolumab are IgG4 antibodies targeting programmed death cell receptor (PD-1) used for cancer immunotherapy, that blocks the protection that has cancer cells against the immune system. This antibody works binding and blocking the PD-1 membrane protein of T cells, which is responsible for cell recognition. If T cells cannot recognize the cells, then it would attack, so in this way, the immune system can be enhanced. Pembrolizumab and nivolumab have a variable region that is capable of recognizing the PD-1 receptor, and this plays an important role to kill cancer cells. The structure of the complex PD -1 and its ligand PD-L1 or PD-L2 reveals the structural basis of the PD-1. The interaction with a human antibody has been studied with antibody fragments revealing the molecular basis for the blockade of PD1 / PDL1-PDL2 interaction by pembrolizumab and nivolumab. Different studies involving immunotherapy have shown the remarkable results of pembrolizumab and nivolumab over current chemotherapy for cancer treatment making available a possible way for a new treatment for lung cancer. In a comparative analysis made between those immune checkpoint inhibitors had found the efficacy of pembrolizumab for treatment of NSCLC.


Sign in / Sign up

Export Citation Format

Share Document