scholarly journals Hyaluronic Acid and Controlled Release: A Review

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2649 ◽  
Author(s):  
Ilker S. Bayer

Hyaluronic acid (HA) also known as hyaluronan, is a natural polysaccharide—an anionic, non-sulfated glycosaminoglycan—commonly found in our bodies. It occurs in the highest concentrations in the eyes and joints. Today HA is used during certain eye surgeries and in the treatment of dry eye disease. It is a remarkable natural lubricant that can be injected into the knee for patients with knee osteoarthritis. HA has also excellent gelling properties due to its capability to bind water very quickly. As such, it is one the most attractive controlled drug release matrices and as such, it is frequently used in various biomedical applications. Due to its reactivity, HA can be cross-linked or conjugated with assorted bio-macromolecules and it can effectively encapsulate several different types of drugs, even at nanoscale. Moreover, the physiological significance of the interactions between HA and its main membrane receptor, CD44 (a cell-surface glycoprotein that modulates cell–cell interactions, cell adhesion and migration), in pathological processes, e.g., cancer, is well recognized and this has resulted in an extensive amount of studies on cancer drug delivery and tumor targeting. HA acts as a therapeutic but also as a tunable matrix for drug release. Thus, this review focuses on controlled or sustained drug release systems assembled from HA and its derivatives. More specifically, recent advances in controlled release of proteins, antiseptics, antibiotics and cancer targeting drugs from HA and its derivatives were reviewed. It was shown that controlled release from HA has many benefits such as optimum drug concentration maintenance, enhanced therapeutic effects, improved efficiency of treatment with less drug, very low or insignificant toxicity and prolonged in vivo release rates.

2021 ◽  
Vol 09 ◽  
Author(s):  
Harshad S Kapare ◽  
Sathiyanarayanan L ◽  
Arulmozhi S ◽  
Kakasaheb Mahadik

Background: Honey bee propolis is one of the natural product reported in various traditional systems of medicines including Ayurveda. Caffeic acid phenethyl ester (CAPE) is an active constituent of propolis which is well known for its anticancer potential. The therapeutic effects of CAPE are restricted owing to its less aqueous solubility and low bioavailability. Objective: In this study CAPE loaded folic acid conjugated nanoparticle system (CLFPN) was investigated to enhance solubility, achieve sustained drug release and improved cytotoxicity of CAPE. Methods: Formulation development, characterization and optimization were carried out by design of experiment approach. In vitro and in vivo cytotoxicity study was carried out for optimized formulations. Results: Developed nanoparticles showed particle size and encapsulation efficiency of 170 ± 2 - 195 ± 3 nm and 75.66 ± 1.52 - 78.80 ± 1.25 % respectively. Optimized formulation CLFPN showed sustained drug release over a period of 42 h. GI50 concentration was decreased by 46.09% for formulation as compared to CAPE in MCF-7 cells indicating targeting effect of CLFPN. An improved in vitro cytotoxic effect was reflected in in-vivo Daltons Ascites Lymphoma model by reducing tumor cells count. Conclusion: The desired nanoparticle characteristic with improved in vivo and in vitro cytotoxicity was shown by developed formulation. Thus it can be further investigated for biomedical applications.


2018 ◽  
Vol 6 (7) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jian He ◽  
Lisha Ai ◽  
Xin Liu ◽  
Hao Huang ◽  
Yuebin Li ◽  
...  

The NIR-laser-driven plasmonic photothermal and sustained drug release behavior of CuS–PTX/SiO2 nanocapsules show great synergistic chemo-photothermal therapeutic effects on cancer cells in vitro and in vivo.


2019 ◽  
Vol 55 (7) ◽  
pp. 953-956 ◽  
Author(s):  
Xinran Guan ◽  
Yong Chen ◽  
Xuan Wu ◽  
Peiyu Li ◽  
Yu Liu

A supramolecular assembly constructed using sulfatocyclodextrin and choline modified chlorambucil exhibits excellent enzyme-response activity and controlled drug release.


2018 ◽  
Vol 6 (6) ◽  
pp. 1580-1591 ◽  
Author(s):  
Ankita R. Desai ◽  
Furqan A. Maulvi ◽  
Mihir M. Pandya ◽  
Ketan M. Ranch ◽  
Bhavin A. Vyas ◽  
...  

Controlled drug release from semi-circular drug-loaded ring-implanted contact lenses.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5303-5303
Author(s):  
Suping Zhang ◽  
Hsien Lai ◽  
Grace Liu ◽  
Laura Rassenti ◽  
Michael Y. Choi ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) cells express high levels of CD44, a cell-surface glycoprotein receptor for hyaluronic acid (HA). We found that a mAb specific for CD44 was directly cytotoxic for leukemia B cells, but had little effect on normal B cells. Moreover, this anti-CD44 mAb could induce CLL cells that expressed the zeta-associated protein of 70 kDa (ZAP-70) to undergo caspase-dependent apoptosis, independent of complement or cytotoxic effector cells (Proc Natl Acad Sci, USA 2013, PMID: 23530247). The cytotoxic effect of this mAb was not mitigated when the CLL cells were co-cultured with mesenchymal stromal cells (MSCs) or hyaluronic acid or when they were stimulated via ligation of the B-cell receptor with anti-µ. A6 (Angstrom Pharmaceuticals) is an 8-amino acid peptide that has marked homology with a linear sequence of CD44. A6 can bind CD44 within a region of the ligand-binding domain, leading to inhibition of the migration and metastatic potential of CD44-expressing cancer cells in vitro and in vivo (Mol Cancer Ther, 2011 PMID: 21885863). We evaluated the cytotoxic activity of A6 against primary leukemia cells of patients with CLL (n = 22). We found that A6 peptide also was directly cytotoxic for CLL cells isolated from different patients in a dose-dependent manner at concentrations that may be achieved in vivo. The A6 peptide appeared less cytotoxic for CLL cells than the intact anti-CD44 mAb, but still had greater direct cytotoxicity for CLL cells that expressed ZAP-70 than for CLL cells that were ZAP-70 negative. Furthermore, the A6 peptide had negligible effect on the viability of lymphocytes isolated from the blood of healthy donors (n = 3). Because clinical studies have found the A6 peptide to be well-tolerated and without dose-limiting toxicity in patients with solid tumors who have been treated to date (N = 40), a clinical study is planned to evaluate the safety and activity of the A6 peptide in the treatment of patients with CLL. Disclosures: Howell: Angstrom Phamaceuticals: Membership on an entity’s Board of Directors or advisory committees. Finlayson:Angstrom Phamaceuticals: Employment.


2020 ◽  
Vol 26 ◽  
Author(s):  
Phuong H.L. Tran ◽  
Thao T.D. Tran

: Mucoadhesive formulations have been demonstrated to result in efficient drug delivery systems with advantages over existing systems such as increased local retention and sustained drug release via adhesiveness to mucosal tissues. The controlled release of colon-targeted, orally administered drugs has recently attracted a number of studies investigating mucoadhesive systems. Consequently, substantial designs, from mucoadhesive cores to shells of particles, have been studied with promising applications. This review will provide an overview of and discuss specific strategies for developing mucoadhesive systems for colon-targeted oral delivery with controlled drug release, including mucoadhesive matrices, cross-linked mucoadhesive microparticles, coatings and mucoadhesive nanoparticles. The understanding of the basic principle of these designs and advanced formulations throughout will lead to the development of products with efficient drug delivery at the colon for therapies for different diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amit Kumar Nayak ◽  
Dilipkumar Pal ◽  
Kousik Santra

The current study deals with the development and optimization of ispaghula (Plantago ovata F.) husk mucilage- (IHM-) alginate mucoadhesive beads containing glibenclamide by ionotropic gelation technique. The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 32 factorial design based on response surface methodology. The observed responses were coincided well with the predicted values by the experimental design. The optimized mucoadhesive beads exhibited 94.43±4.80% w/w of DEE and good mucoadhesivity with the biological membrane in wash-off test and sustained drug release profile over 10 hours. The beads were also characterized by SEM and FTIR analyses. The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism. The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoqin Qian ◽  
Wenping Wang ◽  
Wentao Kong ◽  
Yu Chen

A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs). The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography bothin vitroandin vivoand can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX-) loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higherin vitroandin vivotumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document