scholarly journals N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4366 ◽  
Author(s):  
Larissa Naida Rosa ◽  
Thays Raphaela Gonçalves ◽  
Sandra T. M. Gomes ◽  
Makoto Matsushita ◽  
Rhayanna Priscila Gonçalves ◽  
...  

The use of chemometric tools is progressing to scientific areas where analytical chemistry is present, such as food science. In analytical food evaluation, oils represent an important field, allowing the exploration of the antioxidant effects of herbs and seeds. However, traditional methodologies have some drawbacks which must be overcome, such as being time-consuming, requiring sample preparation, the use of solvents/reagents, and the generation of toxic waste. The objective of this study is to evaluate the protective effect provided by plant-based substances (directly, or as extracts), including pumpkin seeds, poppy seeds, dehydrated goji berry, and Provençal herbs, against the oxidation of antioxidant-free soybean oil. Synthetic antioxidants tert-butylhydroquinone and butylated hydroxytoluene were also considered. The evaluation was made through thermal degradation of soybean oil at different temperatures, and near-infrared spectroscopy was employed in an n-way mode, coupled with Parallel Factor Analysis (PARAFAC) to extract nontrivial information. The results for PARAFAC indicated that factor 1 shows oxidation product information, while factor 2 presents results regarding the antioxidant effect. The plant-based extract was more effective in improving the frying stability of soybean oil. It was also possible to observe that while the oxidation product concentration increased, the antioxidant concentration decreased as the temperature increased. The proposed method is shown to be a simple and fast way to obtain information on the protective effects of antioxidant additives in edible oils, and has an encouraging potential for use in other applications.

2012 ◽  
Vol 18 (3) ◽  
pp. 271-280 ◽  
Author(s):  
I Betalleluz-Pallardel ◽  
R Chirinos ◽  
H Rogez ◽  
R Pedreschi ◽  
D Campos

Phenolic compounds from mashua tuber were evaluated as potential antioxidants to retard the oxidation of crude soybean oil submitted to accelerated storage and frying. During the accelerated storage, an ethanolic crude extract, a purified extract, an aqueous fraction and an ethyl acetate fraction from mashua containing different gallic acid equivalent concentrations (100, 300 and 600 ppm) in oil were evaluated at 55 °C. After 15 days of storage, better effects were evidenced against soybean oil oxidation at 300 and 600 ppm of ethyl acetate fraction in comparison to 200 ppm butylated hydroxytoluene and the control (no antioxidant added). During the frying process at ∼180 °C, principal component analysis revealed that the content of trienes and dienes were strongly correlated with the frying batch. Ethyl acetate fraction at 200 ppm showed the highest efficacy against oil oxidation in terms of polar compound values, free fatty acids and conjugated dienes and trienes in comparison to the oil containing 200 ppm tert-butylhydroquinone and control. Differential scanning calorimetry corroborated the efficacy of ethyl acetate fraction phenolic and it is strongly recommended as method for validation of results. This study provides strong evidence related to the excellent protective effects against soybean oil oxidation of mashua phenolics. This crop could be utilized as an alternative source of natural antioxidants by the oil industry.


2020 ◽  
Vol 26 ◽  
Author(s):  
Abdulqader Fadhil Abed ◽  
Yazun Bashir Jarrar ◽  
Hamzeh J Al-Ameer ◽  
Wajdy Al-Awaida ◽  
Su-Jun Lee

Background: Oxandrolone is a synthetic testosterone analogue that is widely used among bodybuilders and athletes. However, oxandrolone causes male infertility. Recently, it was found that metformin reduces the risk of infertility associated with diabetes mellitus. Aim: This study aimed to investigate the protective effects of metformin against oxandrolone-induced infertility in male rats. Methods: Rats continuously received one of four treatments (n=7) over 14 days: control DMSO administration, oxandrolone administration, metformin administration, or co-administration of oxandrolone and metformin. Doses were equivalent to those used for human treatment. Subsequently, testicular and blood samples were collected for morphological, biochemical, and histological examination. In addition, gene expression of the testosterone synthesizing enzyme CYP11A1 was analyzed in the testes using RT-PCR. Results: Oxandrolone administration induced male infertility by significantly reducing relative weights of testes by 48%, sperm count by 82%, and serum testosterone levels by 96% (ANOVA, P value < 0.05). In addition, histological examination determined that oxandrolone caused spermatogenic arrest which was associated with 2-fold downregulation of testicular CYP11A1 gene expression. However, co-administration of metformin with oxandrolone significantly ameliorated toxicological alterations induced by oxandrolone exposure (ANOVA, P value < 0.05). Conclusion: Metformin administration protected against oxandrolone-induced infertility in male rats. Further clinical studies are needed to confirm the protective effect of metformin against oxandrolone-induced infertility among athletes.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 479
Author(s):  
Seong Hoon Kim ◽  
Hye-Won Yum ◽  
Seung Hyeon Kim ◽  
Wonki Kim ◽  
Su-Jung Kim ◽  
...  

Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing β-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.


Author(s):  
SUNNY SONI ◽  
MADHU AGARWAL

Biodiesel is a renewable liquid fuel made from natural, renewable biological sources such as edible and non edible oils. Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. Reasons for growing interest in biodiesel include its potential for reducing noxious emissions, potential contributions to rural economic development, as an additional demand center for agricultural commodities, and as a way to reduce reliance on foreign oil. Biodiesel was prepared from soybean oil by transesterification with methanol in the presence of cement clinker. Cement clinker was examined as a catalyst for a conversion of soybean oil to fatty acid methyl esters (FAMEs). It can be a promising heterogeneous catalyst for the production of biodiesel fuels from soybean oil because of high activity in the conversion and no leaching in the transesterification reaction. The reaction conditions were optimized. A study for optimizing the reaction parameters such as the reaction temperature, and reaction time, was carried out. The catalyst cement clinker composition was characterized by XRF. The results demonstrate that the cement clinker shows high catalytic performance & it was found that the yield of biodiesel can reach as high as 84.52% after 1 h reaction at 65°C, with a 6:1 molar ratio of methanol to oil, 21 wt% KOH/cement clinker as catalyst.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ahmed A Elmarakby ◽  
Jessica Faulkner ◽  
Chelsey Pye ◽  
Babak Baban ◽  
Katelyn Rouch ◽  
...  

We previously showed that inhibition of soluble epoxide hydrolase (sEH) increased epoxyeicosatrienoic acids (EETs) levels and reduced renal injury in diabetic mice and these changes were associated with induction of hemeoxygenase-1 (HO-1). The present study determines whether the inhibition of HO negates the reno-protective effect of sEH inhibition in diabetic spontaneously hypertensive rats as a model of diabetic nephropathy in which hypertension coexists with diabetes. After six weeks of induction of diabetes with streptozotocin, SHR were divided into the following groups: untreated, treated with the sEH inhibitor, trans -4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (AUCB), treated with the HO inhibitor, stannous mesoporphyrin (SnMP), and treated with both inhibitors for four more weeks; non diabetic SHR served as a control group. Although inhibition of sEH increased renal EETs/DHETEs ratio and HO-1 activity in diabetic SHR, it did not significantly alter blood pressure (plasma EETs/DHETEs ratio was 0.5± 0.1 in AUCB-treated vs. 0.1± 0.01 in untreated diabetic SHR, P<0.05). Treatment of diabetic SHR with AUCB reduced the elevation in urinary albumin and nephrin excretion (albuminuria was 6.5± 0.5 in AUCB-treated diabetic SHR vs. 9± 1.7 mg/day in untreated diabetic SHR and nephrinuria was 70±11 in AUCB-treated diabetic SHR vs. 111± 9 μg/day in untreated diabetic SHR, P<0.05) whereas co-administration of SnMP with AUCB prevented these changes (albuminuria was 10.6± 0.6 mg/day and nephrinuria was 91±11 μg/day). Immunohistochemical analysis revealed elevations in renal fibrosis and apoptosis as evidenced by increased renal TGF-β, fibronectin and annexin V expression in diabetic SHR and these changes were reduced with sEH inhibition. Co-administration of SnMP with AUCB prevented its ability to reduce renal fibrosis and apoptosis in diabetic SHR. In addition, SnMP treatment also prevented AUCB-induced decreases in renal macrophage infiltration and renal TGF-β, NFκB and MCP-1 levels in diabetic SHR. These data suggest that HO-1 induction is involved in the protective effect of sEH inhibition against diabetic renal injury.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Sheng-Yong Luo ◽  
Qing-Hua Xu ◽  
Gong Peng ◽  
Zhi-Wu Chen

Objectives. Total flavones from Rhododendron simsii Planch. (TFR) are the effective part extracted from the flowers of Rhododendron simsii Planch. and have obvious protective effects against cerebral ischemic or myocardial injuries in rabbits and rats. However, their mechanism of cardioprotection is still unrevealed. Therefore, the present study was designed to investigate the effect of TFR on myocardial I/R injury and the underlying mechanism. Methods. TFR groups were treated by gavage once a day for 3 days at a dose of 20, 40, and 80 mg/kg, respectively, and then the model of myocardial I/R injury was established. Myocardial infarction, ST-segment elevation, and the expression of UTR, ROCK1, ROCK2, and p-MLC protein in rat myocardium were determined at 90 min after reperfusion. UTR siRNA in vivo transfection and competition binding assay method were used to study the relationship between the protective effect of TFR and UTR. Results. The expression of UTR protein markedly decreased in myocardium of UTR siRNA transfection group rats. TFR could significantly reduce the infarct size and inhibit the increase of RhoA activity and ROCK1, ROCK2, and p-MLC protein expressions both in WT and UTR knockdown rats. The reducing rate of TFR in myocardial infarction area, RhoA activity, and ROCK1, ROCK2, and p-MLC protein expressions in UTR knockdown rats decreased markedly compared with that in WT rats. In addition, TFR had no obvious effect on the increase of ΣST in UTR knockdown rats in comparison with that in model group. In particular, TFR could significantly inhibit the combination of [I125]-hu-II and UTR, and IC50 was 0.854 mg/l. Conclusions. The results indicate that the protective effect of TFR on I/R injury may be correlated with its blocking UTR and the subsequent inhibition of RhoA/ROCK signaling pathway.


2019 ◽  
Vol 64 (3) ◽  
pp. 132-139
Author(s):  
P. S. Usoltseva ◽  
A. V. Alimov ◽  
A. V. Rezaykin ◽  
A. G. Sergeev ◽  
A. V. Novoselov

The aim of this study was to determine the role of the human neonatal receptor for the Fc fragment of IgG (hFcRn) as a common uncoating cellular receptor for echoviruses and coxsackievirus A9 during infection of human rhabdomyosarcoma (RD) cells. Material and methods. The protective effect of the human serum albumin, purified from globulins, (HSA-GF) and antibodies to hFcRn was studied in RD cells infected with several strains and clones of species B enteroviruses possessing different receptor specificity (echoviruses 3, 9, 11, 30 and coxsackieviruses A9, B4, B5). Results. It was shown that HSA-GF at concentrations of 4% or less protected RD cells from infection with echoviruses 3, 9, 11 and coxsackievirus A9. The antibodies to hFcRn at concentrations of 2.5 ug/mL or less demonstrated the similar spectrum of protective activity in RD cells against infection with echoviruses 3, 9, 11, 30 and coxsackievirus A9. The protective effect of HSA-GF or the antibodies to hFcRn was not observed in RD cells infected with coxsackieviruses B4 and B5 that need coxsackievirus-adenovirus receptor for uncoating. Discussion. The usage of the previously characterized echovirus 11 clonal variants with different receptor specificity allowed us to define the function of hFcRn as a canyon-binding uncoating receptor in RD cells. The kinetics and magnitude of the observed protective effects correlated with receptor specificity of the enteroviruses used in this work supporting the two-step interaction of DAF-dependent echoviruses with the cellular receptors. Conclusions. In this study, the function of hFcRn was defined in RD cells as a canyon-binding and uncoating receptor for echoviruses and coxsackievirus A9. The two-step interaction of DAF-dependent echoviruses during entry into the cells was confirmed: initially with the binding receptor DAF and subsequently with the uncoating receptor hFcRn.


Author(s):  
Zhidan Li ◽  
Wei Zhang ◽  
Fang Luo ◽  
Jian Li ◽  
Wenbin Yang ◽  
...  

Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post–lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post–lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.


1999 ◽  
Vol 22 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Claudia A. Grillo ◽  
Analía I. Seoane ◽  
Fernando N. Dulout

The effect of butylated hydroxytoluene (BHT), a widely used food additive, on chromosomal alterations induced by cadmium chloride (CC) and potassium dichromate (PD) in Chinese hamster ovary (CHO) cells was studied both at metaphase and anaphase-telophase. CHO cells were cultured for 15-16 h in the presence of PD (6.0, 9.0 or 12.0 <FONT FACE="Symbol">m</font>M), BHT (1.0 <FONT FACE="Symbol">m</font>g/ml), or PD plus BHT as well as CC (0.5, 1.0 and 2.0 <FONT FACE="Symbol">m</font>M), BHT or CC plus BHT for the analysis of chromosomal aberrations. To perform the anaphase-telophase test, cells were cultured in cover glasses and treated 8 h before fixation with the same chemicals. An extra dose of CC (4 <FONT FACE="Symbol">m</font>M) was used in this test. Both metal salts significantly increased chromosomal aberration frequencies in relation to untreated controls, and to DMSO- and BHT-treated cells. Post-treatment with BHT decreased the yield of chromosomal damage in relation to treatments performed with CC and PD. However, chromosomal aberration frequencies were significantly higher than those of the controls. In the anaphase-telophase test, CC significantly increased the yield of lagging chromosomes with the four doses employed and the frequency of lagging fragments with the highest dose. In combined treatments of CC and BHT, frequencies of the two types of alterations decreased significantly in relation to the cells treated with CC alone. No significant variation was found in the frequencies of chromatin bridges. Significant increases of numbers of chromatin bridges, lagging chromosomes and lagging fragments were found in cells treated with PD. The protective effect of BHT in combined treatments was evidenced by the significant decrease of chromatid bridges and lagging chromosomes in relation to PD-treated cells. Whereas BHT is able to induce chromosomal damage, it can also protect against oxidative damage induced by other genotoxicants.


2011 ◽  
Vol 28 (7) ◽  
pp. 655-662 ◽  
Author(s):  
Mohamed Makni ◽  
Yassine Chtourou ◽  
Mohamed Barkallah ◽  
Hamadi Fetoui

This study investigated the protective effects of vanillin against acute brain damage induced by carbon tetrachloride (CCl4) in rats. The study was performed on 32 male rats divided into four groups: a control group, vanillin group ([Va] 150 mg/kg/day, intraperitoneally [i.p.]) and CCl4 toxication groups received a single injection of CCl4 (1 ml/kg, i.p.; CCl4 and Va + CCl4 groups). The degree of protection in brain tissue was evaluated by the levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase, glutathione transferase, glutathione peroxidase and nitric oxide (NO). Vanillin showed a significant brain-protective effect by decreasing the level of lipid peroxidation and NO2 and elevated the activities of antioxidative enzymes and level of GSH. Consequently vanillin blocked oxidative brain damage induced by CCl4 in rats.


Sign in / Sign up

Export Citation Format

Share Document