scholarly journals Nanohydroxyapatite-Mediated Imatinib Delivery for Specific Anticancer Applications

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4602
Author(s):  
Paulina Sobierajska ◽  
Anna Serwotka-Suszczak ◽  
Damian Szymanski ◽  
Krzysztof Marycz ◽  
Rafal J. Wiglusz

In the present study, a nanoapatite-mediated delivery system for imatinib has been proposed. Nanohydroxyapatite (nHAp) was obtained by co-precipitation method, and its physicochemical properties in combination with imatinib (IM) were studied by means of XRPD (X-ray Powder Diffraction), SEM-EDS (Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy), FT-IR (Fourier-Transform Infrared Spectroscopy), absorption spectroscopy as well as DLS (Dynamic Light Scattering) techniques. The obtained hydroxyapatite was defined as nanosized rod-shaped particles with high crystallinity. The amorphous imatinib was obtained by conversion of its crystalline form. The beneficial effects of amorphous pharmaceutical agents have been manifested in the higher dissolution rate in body fluids improving their bioavailability. Imatinib-to-hydroxyapatite interactions on the surface were confirmed by SEM images as well as absorption and FT-IR spectroscopy. The cytotoxicity of the system was tested on NI-1, L929, and D17 cell lines. The effectiveness of imatinib was not affected by nHAp modification. The calculated IC50 values for drug-modified nHAp were similar to those for the drug itself. However, higher cytotoxicity was observed at higher concentrations of imatinib, in comparison with the drug alone.

2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


2015 ◽  
Vol 735 ◽  
pp. 177-181
Author(s):  
Ee Ting Wong ◽  
Pei Cheng Teh ◽  
Kian Hwa Chan ◽  
Ani Idris

The magnetic nanoparticles of manganese-doped magnetite (Mn-Fe2O4) were synthesized by the simple co-precipitation method. The stable Mn2+ and Fe3+ salts in the ratio of 1:2 in aqueous solution, were added into the sodium hydroxide solution to form the Mn-Fe2O4 precipitate at temperature of 95°C. The synthesized nanoparticles were then characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) and X-ray diffraction spectroscopy (XRD). It was then entrapped in the PVA-alginate matrix to form the nanophotoadsorbent in beads form. The synthesized nanoparticles embedded bead was characterized by Scanning Electron Microscopy (SEM). The effects of various parameters, such as contact time, pH, nanoparticles dosage were investigated. The control study was also performed to reveal the performance of photo-adsorbent towards the Cu (II) removal under the light and dark conditions. It was found that the removal efficiency of the Cu (II) achieved 97.07% (1.46ppm) which complied to the WHO drinking water standard of less than 1.5ppm after 180 min treatment.


Author(s):  
Pelin Aktaş

BaTi5O11 has been widely researched due to its unique microwave properties. Conventionally it is challenging to obtain this compound as a single phase. The BaTi5O11 was synthesized via co-precipitation technique using an aqueous solution of titanium(IV)(triethanolaminato) isopropoxide, barium nitrate and ammonia as precursors which are stable in an aqueous media. The phase evolution, purity, and structure were identified by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray (EDX) spectroscopy analysis. The desired BaTi5O11 structure was obtained by calcination at 900?C. Furthermore, the structure is characterized by TGA, FT-IR and Raman studies. The study showed that the particles were between 80 and 120 nm in size and the average crystallite size was determined from the Scherrer formula as 68.1 nm at 900?C.


2017 ◽  
Vol 727 ◽  
pp. 663-669
Author(s):  
Zhi Yuan Cao ◽  
Yu Feng Song ◽  
Xia Shen ◽  
Jian Hui Fang

Ni-rich layer LiNi0.5Co0.2Mn0.3O2 cathode materials have been synthesized by Electrospinning and co-precipitation method. The physical, chemical, and electrochemical properties of the LiNi0.5Co0.2Mn0.3O2 nanofibers were investigated by X-ray diffraction, field emission−scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectroscopy,Brunauer, Emmett, and Teller (BET) measurements, and galvanostatic tests. The electrospun nanofibers with small particle size and hollow tubes provided fast lithium ion intercalation and de-intercalation properties, leading to an enhanced electrochemical capability for LiNi0.5Co0.2Mn0.3O2 nanofibers.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 998 ◽  
Author(s):  
Laura Catenacci ◽  
Milena Sorrenti ◽  
Maria Cristina Bonferoni ◽  
Lee Hunt ◽  
Mino R. Caira

The aim of the study was to determine the feasibility of complexation between the antioxidant trans-resveratrol (RSV) and underivatized cyclodextrins (CDs) using a variety of preparative methods, including physical mixing, kneading, microwave irradiation, co-evaporation, and co-precipitation techniques. Products were characterized using differential scanning calorimetry (DSC), simultaneous thermogravimetric/DSC analysis (TGA/DSC), Fourier transform infrared (FT-IR) spectroscopy, and powder X-ray diffraction (PXRD). With α-CD and RSV, sample amorphization was revealed by PXRD and FT-IR, but no definitive inclusion complexation was evident. Similar results were obtained in attempts to complex RSV with β-CD. However, complex formation between γ-CD and RSV was evident from observation of an endo-/exothermic effect appearing in the DSC trace of the product from kneading and was further corroborated by FT-IR and PXRD methods. The latter technique indicated complexation unequivocally as the diffraction peak profile for the product matched that for known isostructural γ-CD complexes. Single crystal X-ray analysis followed, confirming the predicted complex between γ-CD and RSV. A combination of 1H NMR and TGA data yielded the complex formula (γ-CD)3·(RSV)4·(H2O)62. However, severe disorder of the RSV molecules prevented their modeling. In contrast, our previous studies of the inclusion of RSV in methylated CDs yielded crystals with only minor guest disorder.


2017 ◽  
Vol 105 (2) ◽  
Author(s):  
Gehan E. Sharaf El-Deen ◽  
Neama G. Imam ◽  
Refaat R. Ayoub

AbstractSuperparamagnetic iron oxide nanoparticles (IO-MNPs) coated with natural polymers, starch (IO-S MNPs) and dextrin (IO-D MNPs), were synthesized by modified co-precipitation method. IO and hybrid-IO-MNPs were characterized by XRD, SEM, HRTEM, FT-IR spectroscopy, vibrating sample magnetometer (VSM) and zeta potential (ZP). IO-S MNPs and IO-D MNPs have IO core-shell structure with core of 10.8 nm and 13.8 nm and shell of 7.5 nm and 5.9 nm, respectively. The efficiency of the hybrid IO-MNPs for sorption of


2021 ◽  
Vol 06 ◽  
Author(s):  
Mustapha Dib ◽  
Mohammed Naciri Bennani ◽  
Ouchetto Hajiba ◽  
Khadija Ouchetto ◽  
Hafid Abderrafia ◽  
...  

Background: In this study, we determined the acid neutralizing capacity (ANC) of Mg/Al-Hydrotalcite-like compounds. The MgAl-hydrotalcites were synthesized by co-precipitation method at room temperature using Mg/Al molar ratios 2 and 3. The synthesized bioactive nanomaterials were characterized by various physico-chemical techniques such as TG/dTG, DRX, FT-IR spectroscopy, BET/BHJ and MEB/EDX. The antacid activity assay was done by converting both synthesized samples into liquids, 1 g of which was added to 50 ml of deionized water at 37°C under vigorous agitation. The acid neutralizing capacity (ANC) was evaluated with 0.1N HCl. The pH was constantly measured using a pH meter and values were recorded every minute up to 35 min. In order to improve the neutralizing power of the samples, we performed on the MgAl-HT3 synthesized an exchange of chlorides by carbonates. The exchanged Mg/Al-Hydrotalcite (MgAl-HTE) shows a high acid neutralization capacity (up to 13.5 mEq/g). Objective: To synthesize an MgAl-hydrotalcite-like compounds and evaluation of their acid neutralizing capacity and thus can be good candidates for pharmaceutical applications as antacid drugs. Methods: Preparation of MgAl-hydrotalcite-like compounds by coprecipitation methods - Characterization of samples by physico-chemical techniques such as TG/dTG, DRX, FT-IR spectroscopy, BET/BHJ and MEB/EDX. - Evaluation of acid neutralizing capacity by titration procedure (Dose-titration) . Results: This protocol describes the preparation of MgAlhydrotalcite-like using the classical coprecipitation method. The synthesized samples were characterized by various physicochemical techniques such as TG/dTG, DRX, FT-IR spectroscopy, BET/BHJ and MEB/EDX. The as-synthetized samples were used for the evaluation of their acid-neutralizing capacity (ANC). Further, an exchanged MgAl-Hydrotalcite with carbonate was described for the purpose to increases the acid-neutralizing capacity. Conclusion: In summary, this study describes a simple synthesis of MgAl-Hydrotalcites compounds by a co-precipitation method at constant pH around 10, with a ratio Mg/Al = 3 and 2 (referred to as MgAl-HT3 and MgAl-HT2). An exchange of the chlorides (not eliminated by washing) by the carbonates was carried out on hydrotalcite with a ratio Mg/Al = 3 and the solid obtained was named MgAl-HT3E. The materials MgAl-HT2, MgAl-HT3 and MgAl-TH3E were used to evaluate their antacid activity. To this end, a study was conducted to determine the acid neutralizing capacity (ANC). As a result, the MgAl-HT3E was able to increase acid neutralizing capacity and maintaining an ideal pH. These results could be interesting to prepare novel antacid drugs (due to the low cost of synthesized materials) essentially the hydrotalcite of Mg/Al ratio equal to 3 because of its relatively slow kinetics of releasing basic species and therefore of its beneficial action as an antacid.


2013 ◽  
Vol 645 ◽  
pp. 129-132 ◽  
Author(s):  
Jantasom Khanidtha ◽  
Suttinart Noothongkaew ◽  
Supakorn Pukird

SnO2-CuO nanocomposites have been synthesized with the simple co-precipitation method for gas sensing properties. Sn and CuO powder were the starting materials. The synthesized products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that SnO2-CuO nanocomposites have a tetragonal and monoclinic structure, respectively. SEM images verify that the some microballs are up to 10 µm and nanorods have a diameter range from 10-100 nm, while length ranges a few micrometers. The nanocomposite products were highly sensitivity to CO2gas at room temperature.


Sign in / Sign up

Export Citation Format

Share Document