scholarly journals Phytochemical Analysis and Antioxidant and Anti-Inflammatory Capacity of the Extracts of Fruits of the Sechium Hybrid

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4637
Author(s):  
Itzen Aguiñiga-Sánchez ◽  
Marcos Soto-Hernández ◽  
Jorge Cadena-Iñiguez ◽  
Mario Suwalsky ◽  
José R. Colina ◽  
...  

In addition to their own antioxidants, human cells feed on external antioxidants, such as the phenolic compounds of fruits and vegetables, which work together to keep oxidative stress in check. Sechium edule, an edible species of chayote, has phenolic compounds with antioxidant activity and antineoplastic activity. A Sechium hybrid shows one thousand times greater antineoplastic activity than edible species, but its antioxidant and anti-inflammatory activities and the content of phenolic compounds are unknown. The aim of this study was to determine the antioxidant and anti-inflammatory capacity of the extract of fruits of the Sechium hybrid in vitro and in vivo. Phytochemical analysis using HPLC showed that the extract of the Sechium hybrid has at least 16 phenolic compounds; galangin, naringenin, phloretin and chlorogenic acid are the most abundant. In an in vitro assay, this extract inhibited 2,2-diphenyl-L-picrylhydrazyl (DPPH) activity and protected the dimyristoylphosphatidylethanolamine (DMPE) phospholipid model cell membrane from oxidation mediated by hypochlorous acid (HClO). In vivo, it was identified that the most abundant metabolites in the extract enter the bloodstream of the treated mice. On the other hand, the extract reduces the levels of tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and interleukin-6 (IL-6) but increases interleukin-10 (IL-10) and glutathione peroxidase levels. Our findings indicate that intake of the fruits of the Sechium hybrid leads to antioxidant and anti-inflammatory effects in a mouse model. Therefore, these results support the possibility of exploring the clinical effect of this hybrid in humans.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Andra-Diana Andreicut ◽  
Alina Elena Pârvu ◽  
Augustin Cătălin Mot ◽  
Marcel Pârvu ◽  
Eva Fischer Fodor ◽  
...  

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiao Wang ◽  
Mikael Sjölinder ◽  
Yumin Gao ◽  
Yi Wan ◽  
Hong Sjölinder

ABSTRACTNeisseria meningitidiscolonizes the nasopharyngeal mucosa of healthy populations asymptomatically, although the bacterial surface is rich in motifs that activate the host innate immunity. What determines the tolerant host response to this bacterium in asymptomatic carriers is poorly understood. We demonstrated that the conserved meningococcal surface protein NhhA orchestrates monocyte (Mo) differentiation specifically into macrophage-like cells with a CD200Rhiphenotype (NhhA-Mφ). In response to meningococcal stimulation, NhhA-Mφ failed to produce proinflammatory mediators. Instead, they upregulated interleukin-10 (IL-10) and Th2/regulatory T cell (Treg)-attracting chemokines, such as CCL17, CCL18, and CCL22. Moreover, NhhA-Mφ were highly efficient in eliminating bacteria. Thein vivovalidity of these findings was corroborated using a murine model challenged withN. meningitidissystematically or intranasally. The NhhA-modulated immune response protected mice from septic shock; Mo/Mφ depletion abolished this protective effect. Intranasal administration of NhhA induced an anti-inflammatory response, which was associated withN. meningitidispersistence at the nasopharynx.In vitrostudies demonstrated that NhhA-triggered Mo differentiation occurred upon engaged Toll-like receptor 1 (TLR1)/TLR2 signaling and extracellular signal-regulated kinase (ERK) and Jun N-terminal protein kinase (JNK) activation and required endogenously produced IL-10 and tumor necrosis factor alpha (TNF-α). Our findings reveal a strategy that might be adopted byN. meningitidisto maintain asymptomatic nasopharyngeal colonization.IMPORTANCENeisseria meningitidisis an opportunistic human-specific pathogen that colonizes the nasopharyngeal mucosa asymptomatically in approximately 10% of individuals. Very little is known about how this bacterium evades immune activation during the carriage stage. Here, we observed thatN. meningitidis, via the conserved surface protein NhhA, skewed monocyte differentiation into macrophages with a CD200Rhiphenotype. Bothin vivoandin vitrodata demonstrated that these macrophages, upon meningococcal infection, played an important role in forming a homeostatic immune microenvironment through their capacity to eliminate invading bacteria and to generate anti-inflammatory mediators. This work provides novel insight into the mechanisms underlying the commensal persistence ofN. meningitidis.


2017 ◽  
Vol 117 (02) ◽  
pp. 401-414 ◽  
Author(s):  
Weixin Xiong ◽  
Xiaoqun Wang ◽  
Daopeng Dai ◽  
Bao Zhang ◽  
Lin Lu ◽  
...  

SummaryWe showed previously that reduced level of vasostatin-2 (VS-2) correlates to the presence and severity of coronary artery disease. In this study, we aimed to figure out the role of chromogranin A (CGA) derived VS-2 in the development of atherosclerosis and monocyte/macrophage recruitment. Apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet exhibited attenuated lesion size by 65 % and 41 % in En face and aortic root Oil red O staining, MOMA-2 positive area by 64 %, respectively, in VS-2 treatment group compared with PBS group. Proinflammatory cytokines tumour necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) were all remarkably reduced in aortic tissues after VS-2 treatment. Mechanistically, in adhesion assay using intravital microscopy in vivo, VS-2 suppressed the number of leukocytes adhering to the wall of apoE-/- mice mesenteric arteries. In chemotactic assay, flow cytometry analysis of peritoneal lavage exudate from C57BL/6 mice showed VS-2 significantly decreased the recruiment number of inflammatory monocytes/macrophages in a thioglycollate-induced peritonitis model. Furthermore, fewer fluorescent latex beads labelled Ly-6Chi monocytes accumulated in aortic sinus lesions of apoE-/- mice after VS-2 treatment. In addition, according to the microarray of human monocyte/macrophage, we found VS-2 stimulation caused a dose-dependent decrease of Rac1 expression and inactivation of Pak1 in mice primary monocytes as well as THP-1 cells and inhibited MCP-1/CCL-5 induced transmigration in vitro. In conclusion, the Chromogranin A-derived VS-2 attenuates atherosclerosis in apoE-/- mice and, in addition to its anti-inflammatory property, also acts as an inhibitor in monocyte/macrophage recruitment.Supplementary Material to this article is available online at www.thrombosis-online.com.


2017 ◽  
Vol 45 (01) ◽  
pp. 137-157 ◽  
Author(s):  
Jian-Jung Chen ◽  
Chung-Chun Huang ◽  
Heng-Yuan Chang ◽  
Pei-Ying Li ◽  
Yu-Chia Liang ◽  
...  

Scutellaria baicalensis has been widely used as both a dietary ingredient and traditional herbal medicine in Taiwan to treat inflammation, cancer, and bacterial and viral infections of the respiratory tract and gastrointestinal tract. This paper aims to investigate the in vitro and in vivo anti-inflammatory effects of S. baicalensis. In HPLC analysis, the fingerprint chromatogram of the water extract of S. baicalensis (WSB) was established. The anti-inflammatory effects of WSB were inverstigated using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) in vitro and LPS-induced lung injury in vivo. WSB attenuated the production of LPS-induced nitric oxide (NO), tumor necrosis factor-alpha (TNF-[Formula: see text], interleukin-[Formula: see text] (IL-1[Formula: see text], and IL-6 in vitro and in vivo. Pretreatment with WSB markedly reduced the LPS-induced histological alterations in lung tissues. Furthermore, WSB significantly reduced the number of total cells and the protein concentration levels in the BALF. WSB blocked protein expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylation of I[Formula: see text]B-[Formula: see text] protein and MAPKs in LPS-stimulated RAW 264.7 cells and LPS-induce lung injury was also blocked. This study suggests that WSB possesses anti-inflammatory effects in vitro and in vivo, and the results suggested that WSB may be a potential therapeutic candidate for the treatment of inflammatory diseases.


2021 ◽  
Author(s):  
Gaosheng Zhu ◽  
Keze Miao ◽  
Mingwei Dong ◽  
Jie Cai ◽  
Zhihao Shen ◽  
...  

Abstract Osteoarthritis (OA), a prevalent disabling disease, is characterized by irreversible cartilage degradation and persistent inflammation. The etiology as well as pathogenesis of OA are not completely unclear and need further investigation. Gigantol, is a bibenzyl derivative extracted from Dendrobium plants and has been found exhibit multiple effects such as anti-inflammatory effects. Nevertheless, the biological function of gigantol on osteoarthritis (OA) is still uncertain. This study aimed at examining the anti-inflammatory effects and latent mechanisms of gigantol in IL-1β-mediated OA progression. In vitro, we identified that gigantol treatment suppressed tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) in interleukin-1 beta (IL-1β) mediated mouse OA chondrocytes. Gigantol was also shown to dose dependently downregulate the metalloproteinase 13 (MMP13) as well as thrombospondin motifs 5 (ADAMTS5) levels. Moreover, IL-1β-mediated AKT and PI3K phosphorylation as well as NF-κB activation were inhibited by gigantol. Meanwhile, in vivo, we detected that gigantol treatment inhibited degradation of the cartilage degradation and lowered the Osteoarthritis Research Society International scores (OARSI) in OA mouse. Therefore, gigantol is a promising therapeutic option for OA.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zunpeng Shu ◽  
Na Xing ◽  
Qiuhong Wang ◽  
Xinli Li ◽  
Bingqing Xu ◽  
...  

This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract ofP. Alkekengi(50-EFP) has antibacterial and/or anti-inflammatory activity bothin vivoandin vitroand to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activityin vitroand efficacyin vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2(PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activityin vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities bothin vitroandin vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities.


2013 ◽  
Vol 41 (04) ◽  
pp. 927-943 ◽  
Author(s):  
Sushruta Koppula ◽  
Wan-Jae Kim ◽  
Jun Jiang ◽  
Do-Wan Shim ◽  
Na-Hyun Oh ◽  
...  

Carpesium macrocephalum (CM) Fr. et Sav. (Compositae) has been used in Chinese folk medicine as an analgesic, hemostatic, antipyretic, and to suppress inflammatory conditions. In the present study we aimed to provide scientific evidence for the anti-inflammatory properties of CM extract and evaluate the intrinsic mechanisms involved in both in vitro and in vivo experimental models. In in vitro findings, CM significantly inhibited the LPS-stimulated release of proinflammatory mediators such as nitric oxide, tumor necrosis factor-alpha, prostaglandin E2, and interleukin-6 in RAW264.7 macrophages in a concentration-dependent fashion. The attenuation of inflammatory responses in LPS-activated RAW264.7 cells by CM was closely associated with the suppression of nuclear factor-kappa B (NF-κB) phosphorylation, IκB-α degradation, and phosphorylation of Akt. CM treatment also attenuated the phosphorylation of STAT through TRIF dependent pathways in LPS-activated RAW264.7 cells. In vivo studies revealed that CM extract concentration dependently suppressed the acetic acid-induced vascular permeability in mice. Considering the data obtained regulation of multiple signaling mechanisms involving TRIF and Akt/NF-κB pathways might be responsible for the potent anti-inflammatory action of CM, substantiating its traditional use in inflammatory diseases.


2019 ◽  
Vol 25 (8) ◽  
pp. 871-935 ◽  
Author(s):  
Zahra Ayati ◽  
Mahin Ramezani ◽  
Mohammad Sadegh Amiri ◽  
Ali Tafazoli Moghadam ◽  
Hoda Rahimi ◽  
...  

Ethnopharmacological relevance: The genus Curcuma, which is the most important source of curcumin, has been widely used in different traditional medicines. Various species of Curcuma have long been used for several purposes such as healing wounds, liver disorders, jaundice and also as a blood purifier. Aim of the study: This review focused on the ethnopharmacological uses and phytochemical aspects of Curcuma. Additionally, in this study, the different properties of two species of Curcuma in Islamic Traditional Medicine (ITM), C. longa and C. zedoaria, as well as their pharmacological aspects in modern medicine are reviewed. Materials and methods: ITM literatures were searched to find Curcuma’s applications. Also, electronic databases including PubMed and Scopus were searched to obtain studies giving any in vitro, in vivo or human evidence of the efficacy of C. longa and C. zedoaria in the treatment of different diseases. ChemOffice software was used to find chemical structures. Results: The analysis showed that ethno-medical uses of Curcuma have been recorded for centuries. Approximately, 427 chemical compounds have been isolated and identified from Curcuma spp. This genus is rich in flavonoids, tannins, anthocyanin, phenolic compounds, oil, organic acids and inorganic compounds. Curcumin is one of the main active ingredients in Curcuma which has strong anti-inflammatory and antioxidant effects. Besides, pharmacological studies have indicated wide range of Curcuma’s activities, such as hepato-protective, antifungal, antihypertensive and neuroprotective. Conclusions: In this study, we reviewed various studies conducted on ethno-medicinal, ITM properties and photochemistry of Curcuma spp. Also, pharmacological activities of two species, C. longa and C. zedoaria are summarized. Pre-clinical investigations have demonstrated some of the traditional aspects of Curcuma, such as wound healing, anti-arthritic, anti-tumor and liver protective activities. These could be related to antioxidant and anti-inflammatory properties of Curcuma which might be due to high amounts of phenolic compounds. Curcuma is mentioned to have neural tonic properties in ITM which have been confirmed by some animal studies. Considering various preclinical studies on C. longa and C. zedoaria and their active ingredient, curcumin, randomized controlled trials are warranted to confirm their promise as a clinically effective hepato and neuro-protective agents.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mengdan Yu ◽  
Lijun Zhang ◽  
Shasha Sun ◽  
Zhenhua Zhang

Abstract Background Diabetic retinopathy (DR) is a common and potentially devastating microvascular complication of diabetes mellitus (DM). The main features of DR are inflammation and oxidative damage. Gliquidone (GLI) is confirmed to be a hypoglycemic drug by oral administration. The current study is aimed to investigate the role and mechanism of GLI on the pathogenesis of DR. Methods High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to explore the anti-inflammatory and anti-oxidant effects of GLI on DR in vitro. Streptozotocin (STZ)-induced DM rats were used to investigate the effects of GLI on retinal structures, inflammation, and oxidative stress. The levels of SIRT1/Notch1 pathway-related proteins were determined by western blotting. Results GLI treatment promoted the viability and inhibited the apoptosis of HG-induced HRECs. Meanwhile, the levels of interleukin (IL)-6, IL-1β, tumour necrosis factor alpha and reactive oxygen species were suppressed, while both catalase and superoxide dismutase were elevated after GLI treatment in HG-induced HRECs. Furthermore, we found that Silencing information regulator 2 related enzyme 1 (SIRT1) silencing reversed the inhibiting effects of GLI on the levels of protein Notch1 and effector genes Hes1 and Hey2. Similar anti-inflammatory and anti-oxidant effects of GLI in STZ-induced DM rats were observed. Additionally, GLI administration also repressed vascular hyperpermeability in vivo. Conclusion GLI may be an effective agent to improve DR through repression of inflammation and oxidative stress via SIRT1/Notch1 pathway.


2007 ◽  
Vol 35 (02) ◽  
pp. 317-328 ◽  
Author(s):  
Jun Liu ◽  
Zheng-Tao Wang ◽  
Li-Li Ji

Neoandrographolide, one of the principal diterpene lactones, isolated from a medicinal herb Andrographis paniculata Nees, was tested in vivo and in vitro for its anti-inflammatory activities and mechanism. Oral administration of neoandrographolide (150 mg/kg) significantly suppressed ear edema induced by dimethyl benzene in mice. Oral administration of neoandrographolide (100–150 mg/kg) also reduced the increase in vascular permeability induced by acetic acid in mice. In vitro studies were performed using the macrophage cell line RAW264.7 to study the effect of neoandrographolide on suppressing phorbol-12-myristate-13-acetate (PMA)-stimulated respiratory bursts and lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). Respiratory bursts were quantified by chemiluminescence (CL) measurements.Results showed that neoandrographolide suppressed PMA-stimulated respiratory bursts dose-dependently from 30 μM to 150 μM. Neoandrographolide also inhibited NO and TNF-α production in LPS-induced macrophages, contributing to the anti-inflammatory activity of A. paniculata. These results indicate that neoandrographolide possesses significant anti-inflammatory effects, which implies that it would be one of the major contributing components to participate in the anti-inflammatory effect of A. paniculata. and a potential candidate for further clinical trial.


Sign in / Sign up

Export Citation Format

Share Document