scholarly journals Smart Synthesis of Trimethyl Ethoxysilane (TMS) Functionalized Core–Shell Magnetic Nanosorbents Fe3O4@SiO2: Process Optimization and Application for Extraction of Pesticides

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4827 ◽  
Author(s):  
Khalid Al-Saad ◽  
Ahmed A. Issa ◽  
Sourour Idoudi ◽  
Basem Shomar ◽  
Mohammad A. Al-Ghouti ◽  
...  

In the current study, a smart approach for synthesizing trimethyl ethoxysilane–decorated magnetic-core silica-nanoparticles (TMS-mcSNPs) and its effectiveness as nanosorbents have been exploited. While the magnetite core was synthesized using the modified Mössbauer method, Stöber method was employed to coat the magnetic particles. The objective of this work is to maximize the magnetic properties and to minimize both particle size (PS) and particle size distribution (PSD). Using a full factorial design (2k-FFD), the influences of four factors on the coating process was assessed by optimizing the three responses (magnetic properties, PS, and PSD). These four factors were: (1) concentration of tetraethyl-orthosilicate (TEOS); (2) concentration of ammonia; (3) dose of magnetite (Fe3O4); and (4) addition mode. Magnetic properties were calculated as the attraction weight. Scanning electron microscopy (SEM) was used to determine PS, and standard deviation (±SD) was calculated to determine the PSD. Composite desirability function (D) was used to consolidate the multiple responses into a single performance characteristic. Pareto chart of standardized effects together with analysis of variance (ANOVA) at 95.0 confidence interval (CI) were used to determine statistically significant variable(s). Trimethyl ethoxysilane–functionalized mcSNPs were further applied as nanosorbents for magnetic solid phase extraction (TMS-MSPE) of organophosphorus and carbamate pesticides.

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 229
Author(s):  
Gabriela Buema ◽  
Adrian Iulian Borhan ◽  
Daniel Dumitru Herea ◽  
George Stoian ◽  
Horia Chiriac ◽  
...  

Novel hybrid inorganic CoFe2O4/carboxymethyl cellulose (CMC) polymeric framework nanobeads-type adsorbents with tailored magnetic properties were synthesized by a combination of coprecipitation and flash-cooling technology. Precise self-assembly engineering of their shape and composition combined with deep testing for cadmium removal from wastewater are investigated. The development of a single nanoscale object with controllable composition and spatial arrangement of CoFe2O4 (CF) nanoparticles in carboxymethyl cellulose (CMC) as polymeric matrix, is giving new boosts to treatments of wastewaters containing heavy metals. The magnetic nanobeads were characterized by means of scanning electron microscopy (SEM), powder X-ray diffraction analysis (XRD), thermogravimetric analysis (TG), and vibrational sample magnetometer (VSM). The magnetic properties of CF@CMC sample clearly exhibit ferromagnetic nature. Value of 40.6 emu/g of saturation magnetization would be exploited for magnetic separation from aqueous solution. In the adsorptions experiments the assessment of equilibrium and kinetic parameters were carried out by varying adsorbent dosage, contact time and cadmium ion concentration. The kinetic behavior of adsorption process was best described by pseudo-second-order model and the Langmuir isotherm was fitted best with maximum capacity uptake of 44.05 mg/g.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanpaseuth Phouthavong ◽  
Supone Manakasettharn ◽  
Duangkamon Viboonratanasri ◽  
Siriwit Buajarern ◽  
Panida Prompinit ◽  
...  

AbstractIn this study, we customized magnetic sorbents by functionalizing silica coated magnetite with octadecyl(C18)silane (Fe3O4@SiO2@C18). This sorbent was intended for the determination of trace orthophosphate (o-PO43−) in unpolluted freshwater samples. The o-PO43− was transformed to phosphomolybdenum blue (PMB), a known polyoxometalate ion. Then the PMB were coupled with cetyl trimethyl ammonium bromide (CTAB), cationic surfactant, in order to hydrophobically bound with the Fe3O4@SiO2@C18 particles through dispersive magnetic solid-phase extraction (d-MSPE) as part of sample preconcentration. The PMB–CTAB–magnetic particles are simply separated from the aqueous solution by the external magnet. The acidified ethanol 0.5 mL was used as PMB-CTAB eluent to produce an intense blue solution, which the absorbance was measured using a UV–Vis spectrophotometer at 800 nm. The proposed method (employing 2 mg of Fe3O4@SiO2@C18) yielded an enhancement factor of 32 with a linear range of 1.0–30.0 µg P L−1. Precision at 6.0 µg P L−1 and 25.0 µg P L−1 were 3.70 and 2.49% (RSD, n = 6) respectively. The lower detection limit of 0.3 µg P L−1 and quantification limit of 1.0 µg P L−1 allowed trace levels analysis of o-PO43− in samples. The reliability and accuracy of the proposed method were confirmed by using a certified reference material. Our method offers highly sensitive detection of o-PO43− with simple procedures that can be operated at room temperature and short analysis time.


2019 ◽  
Vol 11 (40) ◽  
pp. 5108-5117 ◽  
Author(s):  
Halil İbrahim Ulusoy ◽  
Sümeyra Gülle ◽  
Erkan Yilmaz ◽  
Mustafa Soylak

A sensitive and simple determination method for trace vitamin B12 molecules was developed based on magnetic solid phase extraction (MSPE) by using newly synthesized magnetic nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document