scholarly journals Bio-Guided Isolation of Acetogenins from Annona cherimola Deciduous Leaves: Production of Nanocarriers to Boost the Bioavailability Properties

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4861
Author(s):  
Maria Teresa Gutiérrez ◽  
Alexandra G. Durán ◽  
Francisco J. R. Mejías ◽  
José M. G. Molinillo ◽  
Diego Megias ◽  
...  

Annonaceous acetogenins (ACGs) are lipophilic polyketides isolated exclusively from Annonaceae. They are considered to be amongst the most potent antitumor compounds. Nevertheless, their applications are limited by their poor solubility. The isolation of ACGs from Annona cherimola leaves, an agricultural waste, has not been reported to date. Molvizarin (1) cherimolin-1 (2), motrilin (3), annonacin (4) and annonisin (5) are isolated for the first time from A. cherimola deciduous leaves. Annonacin was found to be four- and two-times more potent in tumoral cells (HeLa, 23.6% live cells; IGROV-1, 40.8% live cells for 24 h) than in HEK-293 at 50 µM (24 h, 87.2% live cells). Supramolecular polymer micelles (SMPMs) were synthesized to encapsulate the major ACG isolated, annonacin, in order to improve its solubility in aqueous media. The bioavailability of this compound was increased by a factor of 13 in a simulated human digestive system when compared with free annonacin and an encapsulation efficiency of 35% was achieved. In addition, the cytotoxic activity of SMPMs that hosted annonacin (100 µM, 24 h, 5.8% live cells) was increased compared with free annonacin in water (100 µM, 24 h, 92% live cells). These results highlight the use of by-products of A. cherimola, and their pure compounds, as a promising source of anticancer agents. The use of SMPMs as nanocarriers of ACGs could be an alternative for their application in food field as nutraceutical to enhance the administration and efficacy.

Author(s):  
Margarita E. Neganova ◽  
Sergey G. Klochkov ◽  
Yulia R. Aleksandrova ◽  
Vladimir N. Osipov ◽  
Dmitry V. Avdeev ◽  
...  

Aims: The main goal of this work where is to synthesize new original spirocyclic hydroxamic acids, investigate their cytotoxicity against to the panel of tumor cell lines and possible mechanism of action of these active compounds. Background: Hydroxamic acids are one of the promising classes of chemical compounds with proven has anticancer potential properties. This is manifested in the presence of metal chelating and antioxidant activities, the ability to inhibit histone deacetylase enzymes and a chemosensitizing effect against well known cytostatics. Objective: Original spirocyclic hydroxamic acids were synthesized and spectrums of their antiproliferative activities were investigated. Methods: The cytotoxic activities on different tumor lines (SH-SY5Y, HeLa and healthy cells HEK-293) were investigated and determined possible underlying mechanisms of their activity. Result: New original spirocyclic hydroxamic acids were synthesized. These compounds exhibit antiproliferative properties against of the various tumor cultures cells and also exhibits antioxidant activity, a depolarizing effect on the mitochondrial membrane, inhibit the activity of the histone deacetylase enzyme, and also decrease of basal glycolysis and glycolytic capacity reserve of HeLa and SH-SY5Y tumor cell lines. Conclusion: The most promising are compounds 5j-l containing two chlorine atoms as substituents in the quinazoline part of the molecule and hydroxamate function. Therefore, these compounds can be considered as hit compounds for the development on their basis multi-target anticancer agents.


2020 ◽  
Vol 44 (19) ◽  
pp. 7954-7961
Author(s):  
Sanchita Mondal ◽  
Saikat Kumar Manna ◽  
Sudipta Pathak ◽  
Aritri Ghosh ◽  
Pallab Datta ◽  
...  

A chromogenic and “off–on” fluorogenic chemodosimeter (L) based on a naphthalene–rhodamine B derivative was designed, synthesized and characterized for the selective and sensitive detection of Au3+ ions in mixed acetonitrile aqueous media.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Weiping Lin ◽  
Linfeng Huang ◽  
Ying Li ◽  
Bin Fang ◽  
Gang Li ◽  
...  

Stem cell-based therapies exhibit profound therapeutic potential for treating various human diseases, including cancer. Among the cell types that can be used for this purpose, mesenchymal stem cells (MSCs) are considered as promising source of stem cells in personalized cell-based therapies. The inherent tumor-tropic property of MSCs can be used to target cancer cells. Although the impacts of MSCs on tumor progression remain elusive, they have been genetically modified or engineered as targeted anticancer agents which could inhibit tumor growth by blocking different processes of tumor. In addition, there are close interactions between MSCs and cancer stem cells (CSCs). MSCs can regulate the growth of CSCs through paracrine mechanisms. This review aims to focus on the current knowledge about MSCs-based tumor therapies, the opportunities and challenges, as well as the prospective of its further clinical implications.


Author(s):  
May Wantz ◽  
Mathilde Bouche ◽  
Georges Dahm ◽  
Neila Chekkat ◽  
Sylvie Fournel ◽  
...  

The high interest in N-heterocyclic platinum carbene complexes in cancer research stems from their high cytotoxicity to human cancer cells, their stability, as well as their ease of functionalization. However, the development of these new molecules as anticancer agents still faces multiple challenges, in particular solubility in aqueous media. Here, we synthesized platinum-NHC bioconjugates that combine water-solubility and cytotoxicity by using polyethyleneimine as polymer carrier. We showed that the activity of these conjugates is modulated by the size of the polymer and the overall density of metal ions onto polymer chains. They displayed an effective activity after only 45 minutes of exposure in vitro correlated with a quick uptake by the cells as shown by the use of various fluorescent-tagged derivatives.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 477 ◽  
Author(s):  
Figuerola ◽  
Avila

Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.


Author(s):  
Md Ahasan Habib ◽  
Bashir Khoda

Abstract 3D bio-printing is an emerging technology to fabricate tissue scaffold in-vitro through the controlled allocation of biomaterial and cell, which can mimic the in-vivo counterpart of living tissue. Live cells are often encapsulated into the biomaterials (i.e., bio-ink) and extruded by controlling the printing parameters. The functionality of the bioink depends upon three factors: (a) printability, (b) shape fidelity, and (c) bio-compatibility. Increasing viscosity will improve the printability and the shape fidelity; but will require higher applied extrusion pressure, which is detrimental to the living cell dwelling in the bio-ink, which is often ignored in bio-ink optimization process. In this paper, we demonstrate a roadmap to develop and characterize bio-inks ensuring the printability, shape fidelity, and cell survivability, simultaneously. The pressure exerted on the bio-ink during extrusion processes is measured analytically and the information is incorporated in the rheology design of the bio-ink. Cell-laden filament is fabricated with Human Embryonic Kidney (HEK 293) cell and analyzed the cell viability. The overall cell viability of the filament fabricated with 8 psi and 12 psi is 90% and 74% respectively. Additionally, a crossectional live-dead assay of the printed filament with HEK 293 cell is performed which demonstrates the spatial pattern that matches our findings as well.


2010 ◽  
Vol 53 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Mark J. Tobin ◽  
Ljiljana Puskar ◽  
Richard L. Barber ◽  
Erol C. Harvey ◽  
Philip Heraud ◽  
...  

2018 ◽  
Vol 410 (23) ◽  
pp. 5779-5789 ◽  
Author(s):  
James Doherty ◽  
Zhe Zhang ◽  
Katia Wehbe ◽  
Gianfelice Cinque ◽  
Peter Gardner ◽  
...  
Keyword(s):  

2018 ◽  
Vol 39 (12) ◽  
pp. 1373-1379 ◽  
Author(s):  
Hyo Jung Jang ◽  
Ahran Kim ◽  
Jae Min Jung ◽  
Misun Lee ◽  
Mi Hee Lim ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document