scholarly journals Detection of Fungi and Oomycetes by Volatiles Using E-Nose and SPME-GC/MS Platforms

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5749
Author(s):  
Jérémie Loulier ◽  
François Lefort ◽  
Marcin Stocki ◽  
Monika Asztemborska ◽  
Rafał Szmigielski ◽  
...  

Fungi and oomycetes release volatiles into their environment which could be used for olfactory detection and identification of these organisms by electronic-nose (e-nose). The aim of this study was to survey volatile compound emission using an e-nose device and to identify released molecules through solid phase microextraction–gas chromatography/mass spectrometry (SPME–GC/MS) analysis to ultimately develop a detection system for fungi and fungi-like organisms. To this end, cultures of eight fungi (Armillaria gallica, Armillaria ostoyae, Fusarium avenaceum, Fusarium culmorum, Fusarium oxysporum, Fusarium poae, Rhizoctonia solani, Trichoderma asperellum) and four oomycetes (Phytophthora cactorum, P. cinnamomi, P. plurivora, P. ramorum) were tested with the e-nose system and investigated by means of SPME-GC/MS. Strains of F. poae, R. solani and T. asperellum appeared to be the most odoriferous. All investigated fungal species (except R. solani) produced sesquiterpenes in variable amounts, in contrast to the tested oomycetes strains. Other molecules such as aliphatic hydrocarbons, alcohols, aldehydes, esters and benzene derivatives were found in all samples. The results suggested that the major differences between respective VOC emission ranges of the tested species lie in sesquiterpene production, with fungi emitting some while oomycetes released none or smaller amounts of such molecules. Our e-nose system could discriminate between the odors emitted by P. ramorum, F. poae, T. asperellum and R. solani, which accounted for over 88% of the PCA variance. These preliminary results of fungal and oomycete detection make the e-nose device suitable for further sensor design as a potential tool for forest managers, other plant managers, as well as regulatory agencies such as quarantine services.

Separations ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 64
Author(s):  
Ryan Thompson ◽  
John D. Perry ◽  
Stephen P. Stanforth ◽  
John R. Dean

Development of a rapid approach for universal microbial detection is required in the healthcare, food and environmental sectors to aid with medical intervention, food safety and environmental protection. This research investigates the use of enzymatic hydrolysis of a substrate by a microorganism to generate a volatile organic compound (VOC). One such enzyme activity that can be used in this context is nitroreductase as such activity is prevalent across a range of microorganisms. A study was developed to evaluate a panel of 51 microorganisms of clinical interest for their nitroreductase activity. Two enzyme substrates, nitrobenzene and 1-fluoro-2-nitrobenzene, were evaluated for this purpose with evolution, after incubation, of the VOCs aniline and 2-fluoroaniline, respectively. Detection of the VOCs was done using headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) with obtained limits of quantitation (LOQ) of 0.17 and 0.03 µg/mL for aniline and 2-fluoroaniline, respectively. The results indicated that both enzyme substrates were reduced by the same 84.3% of microorganisms producing the corresponding volatile anilines which were detected using HS-SPME-GC-MS. It was found that nitroreductase activity could be detected after 6–8 h of incubation for the selected pathogenic bacteria investigated. This approach shows promise as a rapid universal microbial detection system.


Author(s):  
Dalma Radványi ◽  
András Geösel ◽  
Zsuzsa Jókai ◽  
Péter Fodor ◽  
Attila Gere

Button mushrooms are one of the most commonly cultivated mushroom species facing different risks e.g.: viral, bacterial and fungal diseases. One of the most common problems is caused by Trichoderma aggressivum, or ‘green mould' disease. The presence or absence of mushroom disease-related moulds can sufficiently be detected from the air by headspace solid-phase microextraction coupled gas chromatography-mass spectrometry (HS SPME GC-MS) via their emitted microbial volatile organic compounds (MVOCs). In the present study, HS SPME GC-MS was used to explore the volatile secondary metabolites released by T. aggressivum f. europaeum on different nutrient-rich and -poor media. The MVOC pattern of green mould was determined, then media-dependent and independent biomarkers were also identified during metabolomic experiments. The presented results provide the basics of a green mould identification system which helps producers reducing yield loss, new directions for researchers in mapping the metabolomic pathways of T. aggressivum and new tools for policy makers in mushroom quality control.


2016 ◽  
Vol 11 (11) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Ágnes M. Móricz ◽  
Györgyi Horváth ◽  
Andrea Böszörményi ◽  
Péter G. Ott

Components of cinnamon bark, rosemary, clove and thyme essential oils were screened for antioxidant and antibacterial activity utilizing thin-layer chromatography (TLC) coupled with the DPPH• test and direct bioautography using Bacillus subtilis cells. The compounds in the active chromatographic zones were identified by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) after their elution. Seven antibacterial components were found: cinnamaldehyde and eugenol in cinnamon bark oil, 1,8-cineole, camphor, borneol and α-terpineol in rosemary oil, eugenol in clove oil and thymol in thyme oil. Only two of them, thymol and eugenol displayed a free radical scavenging effect.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. J. Pérez-Olivero ◽  
J. P. Pérez Trujillo ◽  
J. E. Conde

Application of headspace solid-phase microextraction (HS-SPME) coupled with high-resolution gas chromatographic (HRGC) analytical system was studied for detection and identification of volatile compounds in wines. Four different SPME fibers were tested, and 138 different compounds were detected and identified. The best fiber for the determination of different groups of compounds was selected. Using these results, a comparative study of Madeira, Tenerife (Canary Islands), and Pico (Azores) was carried out.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1343 ◽  
Author(s):  
Piotr Marcinowski ◽  
Dominika Bury ◽  
Monika Krupa ◽  
Dominika Ścieżyńska ◽  
Prasanth Prabhu ◽  
...  

Wastewater from a cosmetic factory, with an initial total organic carbon (TOC) of 146.4 mg/L, was treated with Fe2O3/Fe0/H2O2, Fe3O4/Fe0/H2O2, light/Fe2O3/Fe0/H2O2, and light/Fe3O4/Fe0/H2O2 processes. The light-supported processes were more effective than the lightless processes. The fastest TOC removal was observed during the first 15 min of the process. Out of the four tested kinetic models, the best fit was obtained for the modified second-order reaction with respect to the TOC value. The best treatment efficiency was obtained for the light/Fe3O4/Fe0/H2O2 process with 250/750 mg/L Fe3O4/Fe0 reagent doses, a 1:1 hydrogen peroxide to Chemical Oxygen Demand (H2O2/COD) mass ratio, and a 120 min process time. These conditions allowed 75.7% TOC removal to a final TOC of 35.52 mg/L and 90.5% total nitrogen removal to a final content of 4.9 mg/L. The five-day Biochemical Oxygen Demand to Chemical Oxygen Demand (BOD5/COD) ratio was increased slightly from 0.124 to 0.161. Application of Head Space Solid-Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) analysis allows for the detection and identification of 23 compounds contained in the raw wastewater. The identified compounds were eliminated during the applied process. The HS-SPME-GC-MS results confirmed the high efficiency of the treatment processes.


Author(s):  
C.D. Humphrey ◽  
T.L. Cromeans ◽  
E.H. Cook ◽  
D.W. Bradley

There is a variety of methods available for the rapid detection and identification of viruses by electron microscopy as described in several reviews. The predominant techniques are classified as direct electron microscopy (DEM), immune electron microscopy (IEM), liquid phase immune electron microscopy (LPIEM) and solid phase immune electron microscopy (SPIEM). Each technique has inherent strengths and weaknesses. However, in recent years, the most progress for identifying viruses has been realized by the utilization of SPIEM.


Sign in / Sign up

Export Citation Format

Share Document