scholarly journals Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 333
Author(s):  
Diana Cenariu ◽  
Eva Fischer-Fodor ◽  
Adrian Bogdan Țigu ◽  
Andrea Bunea ◽  
Piroska Virág ◽  
...  

The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.

Author(s):  
Tiziana Latronico ◽  
Marilena Larocca ◽  
Serafina Milella ◽  
Anna Fasano ◽  
Rocco Rossano ◽  
...  

AbstractIsothiocyanates (ITCs), present as glucosinolate precursors in cruciferous vegetables, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of three different ITCs on ROS production and on the expression of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of various neurological diseases. Primary cultures of rat astrocytes were activated by LPS and simultaneously treated with different doses of Allyl isothiocyanate (AITC), 2-Phenethyl isothiocyanate (PEITC) and 2-Sulforaphane (SFN). Results showed that SFN and PEITC were able to counteract ROS production induced by H2O2. The zymographic analysis of cell culture supernatants evidenced that PEITC and SFN were the most effective inhibitors of MMP-9, whereas, only SFN significantly inhibited MMP-2 activity. PCR analysis showed that all the ITCs used significantly inhibited both MMP-2 and MMP-9 expression. The investigation on the mitogen-activated protein kinase (MAPK) signaling pathway demonstrated that ITCs modulate MMP transcription by inhibition of extracellular-regulated protein kinase (ERK) activity. Results of this study suggest that ITCs could be promising nutraceutical agents for the prevention and complementary treatment of neurological diseases associated with MMP involvement.


Reproduction ◽  
2004 ◽  
Vol 128 (5) ◽  
pp. 517-526 ◽  
Author(s):  
Anne Navarrete Santos ◽  
Sarah Tonack ◽  
Michaela Kirstein ◽  
Marie Pantaleon ◽  
Peter Kaye ◽  
...  

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.


2006 ◽  
Vol 11 (4) ◽  
pp. 423-434 ◽  
Author(s):  
Charlotta Grånäs ◽  
Betina Kerstin Lundholt ◽  
Frosty Loechel ◽  
Hans-Christian Pedersen ◽  
Sara Petersen Bjørn ◽  
...  

The RAS-mitogen-activated protein kinase (MAPK) signaling pathway has a central role in regulating the proliferation and survival of both normal and tumor cells. This pathway has been 1 focus area for the development of anticancer drugs, resulting in several compounds, primarily kinase inhibitors, in clinical testing. The authors have undertaken a cell-based, high-throughput screen using a novel ERF1 Redistribution® assay to identify compounds that modulate the signaling pathway. The hit compounds were subsequently tested for activity in a functional cell proliferation assay designed to selectively detect compounds inhibiting the proliferation of MAPK pathway-dependent cancer cells. The authors report the identification of 2 cell membrane-permeable compounds that exhibit activity in the ERF1 Redistribution® assay and selectively inhibit proliferation of MAPK pathway-dependent malignant melanoma cells at similar potencies (IC50 =< 5 μM). These compounds have drug-like structures and are negative in RAF, MEK, and ERK in vitro kinase assays. Drugs belonging to these compound classes may prove useful for treating cancers caused by excessive MAPK pathway signaling. The results also show that cell-based, high-content Redistribution® screens can detect compounds with different modes of action and reveal novel targets in a pathway known to be disease relevant.


2012 ◽  
Vol 39 (3) ◽  
pp. 621-634 ◽  
Author(s):  
INDIRA PRASADAM ◽  
ROSS CRAWFORD ◽  
YIN XIAO

Objective.Degradative enzymes, such as A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinases (MMP), play key roles in development of osteoarthritis (OA). We investigated if crosstalk between subchondral bone osteoblasts (SBO) and articular cartilage chondrocytes (ACC) in OA alters the expression and regulation of ADAMTS5, ADAMTS4, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and MMP-13, and also tested the possible involvement of mitogen-activated protein kinase (MAPK) signaling pathway during this process.Methods.ACC and SBO were isolated from normal and OA patients. An in vitro coculture model was developed to study the regulation of ADAMTS and MMP under normal and OA joint crosstalk conditions. The MAPK-ERK inhibitor PD98059 was applied to delineate the involvement of specific pathways during this interaction process.Results.Indirect coculture of OA SBO with normal ACC resulted in significantly increased expression of ADAMTS5, ADAMTS4, MMP-2, MMP-3, and MMP-9 in ACC, whereas coculture of OA ACC led to increased MMP-1 and MMP-2 expression in normal SBO. Upregulation of ADAMTS and MMP under these conditions was correlated with activation of the MAPK-ERK1/2 signaling pathway, and addition of the MAPK-ERK inhibitor PD98059 reversed the overexpression of ADAMTS and MMP in cocultures.Conclusion.These results add to the evidence that in human OA, altered bidirectional signals between SBO and ACC significantly influence the critical features of both cartilage and bone by producing abnormal levels of ADAMTS and MMP. We have demonstrated for the first time that this altered crosstalk was mediated by the phosphorylation of MAPK-ERK1/2 signaling pathway.


2003 ◽  
Vol 2 (6) ◽  
pp. 1187-1199 ◽  
Author(s):  
Philip Müller ◽  
Gerhard Weinzierl ◽  
Andreas Brachmann ◽  
Michael Feldbrügge ◽  
Regine Kahmann

ABSTRACT In the phytopathogenic fungus Ustilago maydis, pheromone-mediated cell fusion is a prerequisite for the generation of the infectious dikaryon. The pheromone signal elevates transcription of the pheromone genes and elicits formation of conjugation hyphae. Cyclic AMP and mitogen-activated protein kinase (MAPK) signaling are involved in this process. The MAPK cascade is presumed to be composed of Ubc4 (MAPK kinase kinase), Fuz7 (MAPK kinase), and Ubc3/Kpp2 (MAPK). We isolated the kpp4 gene and found it to be allelic to ubc4. Epistasis analyses with constitutively active alleles of kpp4 and fuz7 substantiate that Kpp4, Fuz7, and Kpp2/Ubc3 are components of the same module. Moreover, we demonstrate that Fuz7 activates Kpp2 and shows interactions in vitro. Signaling via this cascade regulates expression of pheromone-responsive genes, presumably through acting on the transcription factor Prf1. Interestingly, the same cascade is needed for conjugation tube formation, and this process does not involve Prf1. In addition, fuz7 as well as kpp4 deletion strains are nonpathogenic, while kpp2 deletion mutants are only attenuated in pathogenesis. Here we show that strains expressing the unphosphorylatable allele kpp2T182A/Y184F are severely affected in tumor induction and display defects in early infection-related differentiation.


2019 ◽  
Author(s):  
Aroon S. Karra ◽  
Aileen M. Klein ◽  
Svetlana Earnest ◽  
Steve Stippec ◽  
Chonlarat Wichaidit ◽  
...  

AbstractBackgroundThe Ras-Raf-MEK-ERK signaling pathway is essential for proper development and homeostatic regulation in eukaryotic cells and underlies progression of several types of cancer. Many pathway functions are performed by extracellular signal-regulated kinase (ERK)1 and 2 (ERK1/2), serine/threonine protein kinases of the mitogen-activated protein kinase (MAPK) family that interact with a large number of substrates and are highly active in the nucleus.ResultsWe identified the epigenetic regulator CXXC-finger protein 1 (CFP1) as a protein that interacts with ERK2 on chromatin. CFP1 is involved in multiple aspects of chromatin regulation, including histone methylation and DNA methylation. Here, we demonstrate the overlapping roles for ERK1/2 and CFP1 in regulation of immediate early gene (IEG) induction. Our work suggests multiple modes of co-regulation and demonstrates that CFP1 is required for an optimal signal-dependent response. We also show that CFP1 is an ERK2 substrate in vitro and identify several phosphorylation sites. Furthermore, we provide evidence that Su(var)3-9, Enhancer-of-zeste and Trithorax (Set)1b, a CFP1-interacting histone methylase, is phosphorylated by ERK2 and is regulated by CFP1.ConclusionOur work highlights ERK1/2 interactions with chromatin regulators that contribute to MAPK signaling diversity in the nucleus.


Author(s):  
William E. Tidyman ◽  
Alice F. Goodwin ◽  
Yoshiko Maeda ◽  
Ophir D. Klein ◽  
Katherine A. Rauen

Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes due to mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due in part to an inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction of myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction of p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS.


2020 ◽  
Vol 12 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Zhuang Zhang ◽  
Meng Zhong ◽  
Jun Wang ◽  
Dongjian Xia ◽  
Jinsuo Bao

Baicalein is one of the chief flavones extracted from Scutellariabaicalensis georgi which was earlier reported for its neuroprotective efficacy against Parkinson's disease (PD). In the present study, a simple and efficient synthetic procedure for the preparation of CeO2NPs using Ce(NO3)3 as a primary precursor and baicalein as a stabilizing agent was proposed. Further, the neuroprotective response of baicalein stabilized CeO2 NPs against rotenone-stimulated parkinsonian diseased mice has been explored both in-vitro and in-vivo. From the experimental findings, it was also evident that baicalein exposure has enhanced the motor impairments, and hindered the pro-inflammatory cytokine release and blocked the NF-κB along with MAPK signaling pathway in rotenone-stimulated PD rat models.


2002 ◽  
Vol 227 (4) ◽  
pp. 260-265 ◽  
Author(s):  
Ernest B. Izevbigie ◽  
Stephen I. Ekunwe ◽  
Jenny Jordan ◽  
Carolyn B. Howard

The role of ethanol or its metabolites on breast neoplasm has not been characterized. We hypothesized that ethanol may alter the growth rate of human breast tumor epithelial cells by modulating putative growth-promoting signaling pathways such as p44/42 mitogen-activated protein kinases (MAPKs). The MCF-7 cell line, considered a suitable model, was used in these studies to investigate the effects of ethanol on [3H]thymidine incorporation, cell number, and p44/42 MAPK activities in the presence or absence of a MAPK or extracellular signal-regulated kinase ERK-1, and (MEK1) inhibitor (PD098059). Treatment of MCF-7 cells with a physiologically relevant concentration of ethanol (0.3% or 65 mM) increased p44/42 activities by an average of 400% (P < 0.02), and subsequent cell growth by 200% (P < 0.05) in a MEK1 inhibitor (PD098059)-sensitive fashion, thus suggesting that the Ras/MEK/MAPK signaling pathways are crucial for ethanol-induced MCF-7 cell growth.


Sign in / Sign up

Export Citation Format

Share Document