scholarly journals Influence of Non-Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 644
Author(s):  
Maria Tufariello ◽  
Mariagiovanna Fragasso ◽  
Joana Pico ◽  
Annarita Panighel ◽  
Simone Diego Castellarin ◽  
...  

Wine fermentation processes are driven by complex microbial systems, which comprise eukaryotic and prokaryotic microorganisms that participate in several biochemical interactions with the must and wine chemicals and modulate the organoleptic properties of wine. Among these, yeasts play a fundamental role, since they carry out the alcoholic fermentation (AF), converting sugars to ethanol and CO2 together with a wide range of volatile organic compounds. The contribution of Saccharomyces cerevisiae, the reference organism associated with AF, has been extensively studied. However, in the last decade, selected non-Saccharomyces strains received considerable commercial and oenological interest due to their specific pro-technological aptitudes and the positive influence on sensory quality. This review aims to highlight the inter-specific variability within the heterogeneous class of non-Saccharomyces in terms of synthesis and release of volatile organic compounds during controlled AF in wine. In particular, we reported findings on the presence of model non-Saccharomyces organisms, including Torulaspora delbrueckii, Hanseniaspora spp,Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia spp. and Candida zemplinina, in combination with S. cerevisiae. The evidence is discussed from both basic and applicative scientific perspective. In particular, the oenological significance in different kind of wines has been underlined.

2013 ◽  
Vol 13 (12) ◽  
pp. 32649-32701 ◽  
Author(s):  
M. Li ◽  
Q. Zhang ◽  
D. G. Streets ◽  
K. B. He ◽  
Y. F. Cheng ◽  
...  

Abstract. An accurate speciation mapping of non-methane volatile organic compounds (NMVOC) emissions has an important impact on the performance of chemical transport models (CTMs) in simulating ozone mixing ratios and secondary organic aerosols. In this work, we developed an improved speciation framework to generate model-ready anthropogenic Asian NMVOC emissions for various gas-phase chemical mechanisms commonly used in CTMs by using an explicit assignment approach and updated NMVOC profiles, based on the total NMVOC emissions in the INTEX-B Asian inventory for the year 2006. NMVOC profiles were selected and aggregated from a wide range of new measurements and the SPECIATE database. To reduce potential uncertainty from individual measurements, composite profiles were developed by grouping and averaging source profiles from the same category. The fractions of oxygenated volatile organic compounds (OVOC) were corrected during the compositing process for those profiles which used improper sampling and analyzing methods. Emissions of individual species were then lumped into species in different chemical mechanisms used in CTMs by applying mechanism-dependent species mapping tables, which overcomes the weakness of inaccurate mapping in previous studies. Gridded emissions for eight chemical mechanisms are developed at 30 min × 30 min resolution using various spatial proxies and are provided through the website: http://mic.greenresource.cn/intex-b2006. Emission estimates for individual NMVOC species differ between one and three orders of magnitude for some species when different sets of profiles are used, indicating that source profile is the most important source of uncertainties of individual species emissions. However, those differences are diminished in lumped species as a result of the lumping in the chemical mechanisms.


2019 ◽  
Vol 26 (6) ◽  
pp. 1731-1741 ◽  
Author(s):  
Mohamad M. Ayad ◽  
Nagy L. Torad ◽  
Islam M. Minisy ◽  
Raja Izriq ◽  
El-Zeiny M. Ebeid

2020 ◽  
Author(s):  
Volker Thiel ◽  
Jan-Peter Duda ◽  
Alfons M. van den Kerkhof ◽  
Joachim Reitner ◽  
Helge Mißbach

<p>The c. 3.5 Ga Dresser Formation of the East Pilbara Craton (Western Australia) contains large amounts of blackish barite. These rocks produce an intense sulfidic odor when crushed, resulting from abundant primary fluid inclusions. In part, the black barites are interbedded with sulfidic stromatolites. Using Raman spectroscopy, microthermometry, and two different online GC–MS approaches, we characterized in detail the chemical composition of the barite-hosted fluid inclusions. Our GC–MS techniques were based on (i) thermodecrepitation at 150-250°C and (ii) solid phase microextraction (SPME)–GC–MS at reduced temperature (50°C), thereby minimizing external contamination and artefact formation. Major fluid inclusion classes yielded mainly H<sub>2</sub>O, CO<sub>2</sub>, and H<sub>2</sub>S in varying abundance, along with minor amounts of COS and  CS<sub>2</sub>, N<sub>2</sub>, and CH<sub>4</sub> (< 1%). Notably, we also detected a wide range of volatile organic compounds, including short–chain ketones and aldehydes, thiophenes, and various organic (poly)sulfides. Some of these compounds (CH<sub>3</sub>SH, acetic acid) have previously been invoked as initials agents for carbon fixation under primordial conditions, but up to now their presence had not been observed in Precambrian materials. Based on our findings, we hypothesize that hydrothermal seepage of organic and inorganic compounds during Dresser times provided both, catabolic and anabolic substrates for early microbial metabolisms.</p>


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 57
Author(s):  
Xinxin Lu ◽  
Lei Zhang ◽  
Wenyue Huang ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
...  

Turnip mosaic virus (TuMV), which is distributed almost all over the world and has a wide range of hosts, mainly brassica crops, was first described in Brassica rapa in the USA. Plant volatile compounds play an important role in the host searching behavior of natural enemies of herbivorous insects. In this study, TuMV-inoculated resistant and susceptible B. rapa lines were tested using volatile metabolome and transcriptome analyses. In volatile metabolome analysis, the volatile organic compounds (VOCs) were different after inoculation with TuMV in resistant B80124 and susceptible B80461, and the degree of downregulation of differentially expressed metabolites was more obvious than the degree of upregulation. Through transcriptome analysis, 70% of differentially expressed genes were in biological process, especially focusing on defense response, flavonoid biosynthetic process, and toxin metabolic process, which indicates that TuMV stress maybe accelerate the increase of VOCs. Integrating the metabolome and transcriptome analyses, after inoculating with TuMV, auxin regulation was upregulated, and ARF, IAA and GH3 were also upregulated, which accelerated cell enlargement and plant growth in tryptophan metabolism. The different genes in zeatin biosynthesis pathways were downregulated, which reduced cell division and shoot initiation. However, the metabolite pathways showed upregulation in brassinosteroid biosynthesis and α-linolenic acid metabolism, which could cause cell enlargement and a stress response. This study determined the difference in volatiles between normal plants and infected plants and may lay a foundation for anti-TuMV research in B. rapa.


2015 ◽  
Vol 8 (10) ◽  
pp. 10121-10157 ◽  
Author(s):  
M. J. Kim ◽  
M. C. Zoerb ◽  
N. R. Campbell ◽  
K. J. Zimmermann ◽  
B. W. Blomquist ◽  
...  

Abstract. Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt−1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer. Measurements from the two instruments were highly correlated (R2=0.80) over a wide range of sampling conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei He ◽  
Seunghyun Weon ◽  
Woojung Jeon ◽  
Myoung Won Chung ◽  
Wonyong Choi

AbstractPhotocatalytic air purification is widely regarded as a promising technology, but it calls for more efficient photocatalytic materials and systems. Here we report a strategy to introduce an in-situ water (self-wetting) layer on WO3 by coating hygroscopic periodic acid (PA) to dramatically enhance the photocatalytic removal of hydrophilic volatile organic compounds (VOCs) in air. In ambient air, water vapor is condensed on WO3 to make a unique tri-phasic (air/water/WO3) system. The in-situ formed water layer selectively concentrates hydrophilic VOCs. PA plays the multiple roles as a water-layer inducer, a surface-complexing ligand enhancing visible light absorption, and a strong electron acceptor. Under visible light, the photogenerated electrons are rapidly scavenged by periodate to produce more •OH. PA/WO3 exhibits excellent photocatalytic activity for acetaldehyde degradation with an apparent quantum efficiency of 64.3% at 460 nm, which is the highest value ever reported. Other hydrophilic VOCs like formaldehyde that are readily dissolved into the in-situ water layer on WO3 are also rapidly degraded, whereas hydrophobic VOCs remain intact during photocatalysis due to the “water barrier effect”. PA/WO3 successfully demonstrated an excellent capacity for degrading hydrophilic VOCs selectively in wide-range concentrations (0.5−700 ppmv).


Separations ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 45 ◽  
Author(s):  
Kevin Eckert ◽  
David Carter ◽  
Katelynn Perrault

Volatile organic compounds (VOCs) are monitored in numerous fields using several commercially-available sampling options. Sorbent-based sampling techniques, such as solid-phase microextraction (SPME), provide pre-concentration and focusing of VOCs prior to gas chromatography–mass spectrometry (GC–MS) analysis. This study investigated the dynamics of SPME Arrow, which exhibits an increased sorbent phase volume and improved durability compared to traditional SPME fibers. A volatile reference mixture (VRM) and saturated alkanes mix (SAM) were used to investigate optimal parameters for microbiological VOC profiling in combination with GC–MS analysis. Fiber type, extraction time, desorption time, carryover, and reproducibility were characterized, in addition to a comparison with traditional SPME fibers. The developed method was then applied to longitudinal monitoring of Bacillus subtilis cultures, which represents a ubiquitous microbe in medical, forensic, and agricultural applications. The carbon wide range/polydimethylsiloxane (CWR/PDMS) fiber was found to be optimal for the range of expected VOCs in microbiological profiling, and a statistically significant increase in the majority of VOCs monitored was observed. B. subtilis cultures released a total of 25 VOCs of interest, across three different temporal trend categories (produced, consumed, and equilibrated). This work will assist in providing foundational data for the use of SPME Arrow in future microbiological applications.


RSC Advances ◽  
2014 ◽  
Vol 4 (88) ◽  
pp. 47488-47496 ◽  
Author(s):  
Weiran Zheng ◽  
Simon Jones ◽  
Xinlin Hong ◽  
Shik Chi Edman Tsang

Simple supported metal catalysts are active for the destruction of a wide range of hazardous chemicals of environmental concerns, including CO, N2O and volatile organic compounds (VOCs), in air at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document