scholarly journals Recent Advances in the Synthesis of β-Carboline Alkaloids

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 663
Author(s):  
Tímea Szabó ◽  
Balázs Volk ◽  
Mátyás Milen

β-Carboline alkaloids are a remarkable family of natural and synthetic indole-containing heterocyclic compounds and they are widely distributed in nature. Recently, these alkaloids have been in the focus of interest, thanks to their diverse biological activities. Their pharmacological activity makes them desirable as sedative, anxiolytic, hypnotic, anticonvulsant, antitumor, antiviral, antiparasitic or antimicrobial drug candidates. The growing potential inherent in them encourages many researchers to address the challenges of the synthesis of natural products containing complex β-carboline frameworks. In this review, we describe the recent developments in the synthesis of β-carboline alkaloids and closely related derivatives through selected examples from the last 5 years. The focus is on the key steps with improved procedures and synthetic approaches. Furthermore the pharmacological potential of the alkaloids is also highlighted.

2018 ◽  
Vol 15 (3) ◽  
pp. 321-340 ◽  
Author(s):  
Neha ◽  
Ashish Ranjan Dwivedi ◽  
Rakesh Kumar ◽  
Vinod Kumar

Background: In recent years, the development and diversification of heterocyclic compounds has become central to the discovery of bioactive compounds with novel or improved pharmacological properties. In particular, N-containing heterocycles are proved to be promising leads and drug candidates, and received huge attention of the medicinal chemists. Objective: Many drugs especially antibiotics are becoming obsolete due to the development of multidrug resistance. Moreover, toxicity and other side effects of some drugs necessitated the quest for safer and more potent drug candidates. The current review article described biological potential of various monocyclic azoles. Recent developments in the synthesis of azole derivatives have been also reviewed. Conclusion: The presence of N-heterocyclic rings can influence the pharmacokinetics, pharmacodynamics, pKa and bioavailability profile of the drug molecules. Compounds containing monocyclic azole rings showed various biological activities and number of molecules are in clinical practice. A number of important leads and potential drug candidates containing azole nucleus are in advance stages of drug developments. Thus, simple, atom economic and more efficient synthetic strategies are desired for the synthesis of new libraries of the compounds.


Synthesis ◽  
2021 ◽  
Author(s):  
Dávid Roman ◽  
Maria Sauer ◽  
Christine Beemelmanns

Here, we have summarized more than 30 representative natural product syntheses published in 2015 to 2020 that employ one or more Horner-Wadsworth-Emmons (HWE) reactions. We comprehensively describe the applied phosphonate reagents, HWE reaction conditions and key steps of the total synthetic approaches. Our comprehensive review will support future synthetic approaches and serve as guideline to find the best HWE conditions for the most complicated natural products known


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 249
Author(s):  
Raquel G. Soengas ◽  
Humberto Rodríguez-Solla

The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3287 ◽  
Author(s):  
Berin Karaman Mayack ◽  
Wolfgang Sippl ◽  
Fidele Ntie-Kang

Natural products have been used for the treatment of human diseases since ancient history. Over time, due to the lack of precise tools and techniques for the separation, purification, and structural elucidation of active constituents in natural resources there has been a decline in financial support and efforts in characterization of natural products. Advances in the design of chemical compounds and the understanding of their functions is of pharmacological importance for the biomedical field. However, natural products regained attention as sources of novel drug candidates upon recent developments and progress in technology. Natural compounds were shown to bear an inherent ability to bind to biomacromolecules and cover an unparalleled chemical space in comparison to most libraries used for high-throughput screening. Thus, natural products hold a great potential for the drug discovery of new scaffolds for therapeutic targets such as sirtuins. Sirtuins are Class III histone deacetylases that have been linked to many diseases such as Parkinson`s disease, Alzheimer’s disease, type II diabetes, and cancer linked to aging. In this review, we examine the revitalization of interest in natural products for drug discovery and discuss natural product modulators of sirtuins that could serve as a starting point for the development of isoform selective and highly potent drug-like compounds, as well as the potential application of naturally occurring sirtuin inhibitors in human health and those in clinical trials.


2013 ◽  
Vol 8 (7) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Takuya Imaoka ◽  
Makoto Iwata ◽  
Takafumi Akimoto ◽  
Kazuo Nagasawa

Oroidin derived pyrrole imidazole marine alkaloids (PIAs) are attractive targets for synthetic organic chemists because of their structural complexity and diversity as well as their interesting biological activities. A number of efforts have been carried out to develop strategies for the synthesis of these natural products. Members of PIAs ( eg., 2-7) which contain tetracyclic ring systems possessing characteristic cyclic guanidine or urea moieties show significant biological activities including anticancer activity and agonistic activity against the adrenoceptor. In this review investigations of the total synthesis of the representative tetracyclic PIAs dibromophakellin (2) and dibromophakellstatin (3) are described.


Synthesis ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 1175-1198 ◽  
Author(s):  
Laurent Commeiras ◽  
Muhammad Idham Darussalam Mardjan ◽  
Jean-Luc Parrain

α,β-Unsaturated γ-hydroxy-γ-butyrolactams are of a great interest due to their presence in designed pharmaceutical molecules and numerous natural products displaying a broad spectrum of biological activities. In addition, these five-membered heterocyclic compounds are also relevant and versatile building blocks in organic synthesis. In this context, strategies for the construction of these scaffolds has triggered considerable attention and this review highlights the progress in the formation of α,β-unsaturated γ-hydroxy-γ-butyrolactams (5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones).1 Introduction2 Intramolecular Routes3 Intermolecular Routes4 Oxidation of Heterocyclic Compounds5 Miscellaneous6 Conclusion


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3036
Author(s):  
Ashraf A. Aly ◽  
Alaa A. Hassan ◽  
Maysa M. Makhlouf ◽  
Stefan Bräse

Mercapto-substituted 1,2,4-triazoles are very interesting compounds as they play an important role in chemopreventive and chemotherapeutic effects on cancer. In recent decades, literature has been enriched with sulfur- and nitrogen-containing heterocycles which are used as a basic nucleus of different heterocyclic compounds with various biological applications in medicine and also occupy a huge part of natural products. Therefore, we shed, herein, more light on the synthesis of this interesting class and its application as a biologically active moiety. They might also be suitable as antiviral and anti-infective drugs.


Author(s):  
Damoder Reddy Motati ◽  
Radhika Amaradhi ◽  
Thota Ganesh

The azaindole framework is ubiquitous in bioactive natural products and pharmaceuticals. This review highlights the synthetic approaches to azaindoles with advantages and limitations, mechanistic pathways and biological importance.


2020 ◽  
Vol 26 (24) ◽  
pp. 2843-2858 ◽  
Author(s):  
Emília P.T. Leitão

This review summarizes the synthetic methodologies used in the last 25 years for the synthesis of chalcones, which are a class of flavonoids having a 1,3-diphenyl-2-propene-1-one backbone. These compounds are considered a hot topic in the field of medicinal chemistry, due to their pharmacological activity and because they are important precursors for the synthesis of heterocyclic compounds with therapeutic applications such as: flavones, flavanones, isoxazolines, benzothiazepines, pyrimidines and pyrazolines derivatives.


2019 ◽  
Vol 16 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Aurelio Ortiz ◽  
Miriam Castro ◽  
Estibaliz Sansinenea

Background:3,4-dihydroisocoumarins are an important small group belonging to the class of naturally occurring lactones isolated from different bacterial strains, molds, lichens, and plants. The structures of these natural compounds show various types of substitution in their basic skeleton and this variability influences deeply their biological activities. These lactones are structural subunits of several natural products and serve as useful intermediates in the synthesis of different heterocyclic molecules, which exhibit a wide range of biological activities, such as anti-inflammatory, antiplasmodial, antifungal, antimicrobial, antiangiogenic and antitumoral activities, among others. Their syntheses have attracted attention of many researchers reporting many synthetic strategies to achieve 3,4-dihydroisocoumarins and other related structures. </P><P> Objective: In this context, the isolation of these natural compounds from different sources, their syntheses and biological activities are reviewed, adding the most recent advances and related developments.Conclusion:This review aims to encourage further work on the isolation and synthesis of this class of natural products. It would be beneficial for synthetic as well as the medicinal chemists to design selective, optimized dihydroisocoumarin derivatives as potential drug candidates, since dihydroisocoumarin scaffolds have significant utility in the development of therapeutically relevant and biologically active compounds.


Sign in / Sign up

Export Citation Format

Share Document