scholarly journals Effects of Probiotic Culture Supernatant on Cariogenic Biofilm Formation and RANKL-Induced Osteoclastogenesis in RAW 264.7 Macrophages

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 733
Author(s):  
Jae-In Jung ◽  
Seung-Min Baek ◽  
Trung Hau Nguyen ◽  
Jin Woo Kim ◽  
Chang-Ho Kang ◽  
...  

Postbiotics are a promising functional ingredient that can overcome the limitations of viability and storage stability that challenge the production of probiotics. To evaluate the effects of postbiotics on oral health, eight spent culture supernatants (SCSs) of probiotics were prepared, and the effects of SCSs on Streptococcus mutans-induced cariogenic biofilm formation and the receptor activator of the nuclear factor κB ligand (RANKL)-induced osteoclastogenesis were evaluated in RAW 264.7 macrophages. SCS of Lactobacillus salivarius MG4265 reduced S. mutans-induced biofilm formation by 73% and significantly inhibited tartrate-resistant acid phosphatase (TRAP) activity, which is a biomarker of mature osteoclasts in RAW 264.7 macrophages. The suppression of RANKL-induced activation of mitogen activated the protein kinases (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) and nuclear factor κB pathways, as well as the upregulation of heme oxygenase-1 expression. The suppression of RANK-L-induced activation of mitogen also inhibited the expression of transcriptional factors (c-fos and nuclear factor of activated T cells cytoplasmic 1) and, subsequently, osteoclastogenesis-related gene expression (tartrate-resistant acid phosphatase-positive (TRAP), cathepsin K, and matrix metalloproteinase-9).Therefore, SCS of L. salivarius MG4265 has great potential as a multifunctional oral health ingredient that inhibits biofilm formation and suppresses the alveolar bone loss that is associated with periodontitis.

2002 ◽  
Vol 32 (9) ◽  
pp. 890-897 ◽  
Author(s):  
Faith Zamamiri-Davis ◽  
Ying Lu ◽  
Jerry T Thompson ◽  
K.Sandeep Prabhu ◽  
Padala V Reddy ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3439 ◽  
Author(s):  
Thanh Q. C. Nguyen ◽  
Tran Duy Binh ◽  
Tuan L. A. Pham ◽  
Yen D. H. Nguyen ◽  
Dai Thi Xuan Trang ◽  
...  

Lasia spinosa (L.) Thwaites was used as a traditional medicine to treat many inflammatory diseases for centuries. However, its effects on the inflammatory response are not yet characterized. In this study, we investigated the anti-inflammatory activities of L. spinosa leaf extract in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. We found that ethanol extracts of L. spinosa leaves showed anti-oxidant activity due to the presence of high levels of polyphenolic compounds. Treatment with the leaf extract significantly repressed the production of inflammatory mediators such as nitric oxide and reactive oxygen species and the expression of pro-inflammatory cytokines in the LPS-stimulated RAW 264.7 cells. Moreover, L. spinosa leaf extract treatment prevented activation of the nuclear factor-kappa B pathway by inhibiting nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) degradation. Furthermore, the mitogen-activated kinase and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathways were suppressed upon treatment with the leaf extract. In addition to suppressing inflammatory factors, the extract also activated the nuclear factor erythroid 2-related factor 2/heme-oxygenase-1 pathway. We propose that L. spinosa leaf extract has the potential as an effective therapeutic agent for alleviating oxidative stress and excessive inflammation.


Sign in / Sign up

Export Citation Format

Share Document