scholarly journals Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.)

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1699
Author(s):  
Zahoor Ahmad ◽  
Shazia Anjum ◽  
Milan Skalicky ◽  
Ejaz Ahmad Waraich ◽  
Rana Muhammad Sabir Tariq ◽  
...  

Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.

2014 ◽  
Vol 47 (1) ◽  
pp. 59-69
Author(s):  
A. Pourmohammad ◽  
F. Shekari ◽  
V. Soltaniband

ABSTRACT A factorial based on RCBD experiment was conducted to evaluate the effects of priming and foliar spray of cycocel on rapeseed yield components. Treatments were included; seed priming (0, 600, 900, 1200, 1500 μM) and foliar spray (0, 600, 1200 μM) with cycocel at development stage of flower buds. The results revealed that seed priming with cycocel significantly increased emerged plant number per plot, silique dry weight in the main stems and branches, plant dry weight, branches number, silique number in the main stems and branches, seed number in branches, 1000 seeds weight, and seed yield in non-stress conditions. Foliar application with cycocel also increased plant dry weight, 1000 seeds weight in branches, harvest index and seed yield. Moreover, interaction effect of priming and foliar application of cycocel increased plant dry weight and 1000 seeds weight with branches. CCC foliar application during the early stages of reproductive stage went to elevated plant dry weight and 1000 seeds weight in auxiliary branches and, also increased harvest index and grain yield. Mean comparison and interaction effects of traits also revealed that, appropriate levels of CCC had the meaningful effects on any agronomic and physiological trait. However, the most meaningful impact in most traits was traced in case with primed seed with 900 and 1500 μM CCC. Overall, owing to the present data, CCC priming under both normal and harsh conditions may raise the germination related traits, seedling establishment, plant growth and ultimately may goes to increased yield.


Author(s):  
Sadia Majeed ◽  
Muhammad Akram ◽  
Muhammad Latif ◽  
Muhammad Ijaz ◽  
Mubshar Hussain

An experiment was conducted to investigate the mitigation of drought stress by foliar application of salicylic acid and potassium in mung bean. Treatments comprised of three drought stress (control, drought stress at flowering stage and drought stress at flowering and pod formation stages) and foliar application salicylic acid (100 ppm) alone and in combination with potassium (1%). Irrigation missing at flowering stage, affected less the growth and yield as compared with irrigation missing at both flowering and pod formation stage. Exogenous application of salicylic acid and potassium could mitigate the adverse effects of drought stress significantly.


2021 ◽  
Vol 20 (1) ◽  
pp. 27-36
Author(s):  
Hassan Bayat ◽  
Mohammad Hossein Aminifard

Selenium (Se) seed priming is an effective method for enhancing seed performance and improving tolerance of crops to abiotic stresses particularly drought. A pot experiment was conducted to determine the effect of seed priming of pot marigold (Calendula officinalis L.) with Se on growth, physiology and antioxidant activity grown under both control and drought stress conditions. Treatments included 6 levels of seed priming with Se (0 (control), 0.5, 1, 1.5, 2 and 4 mg. L–1) and 2 levels of water stress (well-watered and drought conditions). The results showed that supplemental Se at lower concentrations improved growth parameters like total leaf area, root length and total biomass of control and drought-stressed plants. In addition, relative water content and chlorophyll content of the drought-stressed plants increased with the application of Se at lower concentrations. Treatment with Se mitigated adverse effects of drought stress through enhancement of photosynthetic pigments, improvement of water relations, accumulation of soluble sugars and increased antioxidant activity. Seed priming with Se also increased total phenols, flavonoids and free radical scavenging activity of pot marigold plants both under well-watered and water stress conditions. It was found that seed priming with Se at lower concentrations (especially 1.5 mg. L–1) can mitigate the adverse effects of drought stress and improved antioxidant system of pot marigold plants.


2021 ◽  
Vol 280 ◽  
pp. 109904
Author(s):  
Remi Chakma ◽  
Arindam Biswas ◽  
Pantamit Saekong ◽  
Hayat Ullah ◽  
Avishek Datta

2017 ◽  
Vol 38 (1) ◽  
pp. 47 ◽  
Author(s):  
Ijaz Ahmad ◽  
Shehzad Maqsood Ahmed Basra ◽  
Muhammad Akram ◽  
Allah Wasaya ◽  
Muhammad Ansar ◽  
...  

Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA), salicylic acid (SA) and hydrogen peroxide (H2O2) applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI), relative water contents (RWC), chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.


Sign in / Sign up

Export Citation Format

Share Document