scholarly journals Effect of Alkaline Salts on Calcium Sulfoaluminate Cement Hydration

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1938
Author(s):  
Luís Urbano D. Tambara Júnior ◽  
Janaíde C. Rocha ◽  
Malik Cheriaf ◽  
Pilar Padilla-Encinas ◽  
Ana Fernández-Jiménez ◽  
...  

This work analyzes the effect of the presence of 5 wt.% of solid sodium salts (Na2SO4, Na2CO3, and Na2SiO3) on calcium sulfoaluminate cement (CSA) hydration, addresses hydration kinetics; 2-, 28-, and 90-d mechanical strength, and reaction product microstructure (with X-ray diffraction (XRD), and Fourier transform infrared spectroscopy, (FTIR). The findings show that the anions affect primarily the reactions involved. Ettringite and AH3, are the majority hydration products, while monosulfates are absent in all of the samples. All three salts hasten CSA hydration and raise the amount of ettringite formed. Na2SO4 induces cracking in the ≥28-d pastes due to post-hardening gypsum and ettringite formation from the excess SO42– present. Anhydrite dissolves more rapidly in the presence of Na2CO3, prompting carbonation. Na2SiO3 raises compressive strength and exhibits strätlingite as one of its reaction products.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 662
Author(s):  
Yonghua Wu ◽  
Qiqi Li ◽  
Guoxin Li ◽  
Shiying Tang ◽  
Mengdie Niu ◽  
...  

In order to study what the effect of superplasticizers on the setting time, fluidity and compressive strength of calcium sulfoaluminate cement (CSA) a naphthalene-based superplasticizer (BNS) and a polycarboxylic acid superplasticizer (PC) were selected to interact with CSA pastes and ye’elimite, respectively. X-ray diffraction (XRD), thermogravimetric (TG) analysis and scanning electron microscopy (SEM) analytical methods were used to investigate the class, amount and microstructure of the CSA pastes and ye’elimite pastes hydration products under the effect of the superplasticizers. The results showed that the addition of BNS can promote ettringite generation and thus improve the early compressive strength. As the addition of BNS increased from 0.8 wt% to 2.0 wt%, the initial setting time was prolonged 10 min, the final setting time was prolonged 7 min, the 5 min fluidity was improved from no fluidity to 220 mm. However, as the addition of PC increased from 0.08 wt% to 0.20 wt%, the setting time of the PC just changed within 3 min; the 5 min fluidity increased from 110 mm to 195 mm and no 15 min fluidity at all was observed. AS seen by SEM, it can be stated that generated ettringite under the addition of PC was layered and lacking bonding, and its morphology changed from rod-like to flake-like, leading to a decrease in early compressive strength.


2021 ◽  
Vol 13 (4) ◽  
pp. 2295
Author(s):  
Hailong Liu ◽  
Jiuye Zhao ◽  
Yu Wang ◽  
Nangai Yi ◽  
Chunyi Cui

Calcium sulfoaluminate cement (CSA) was used to stabilize a type of marine soft soil in Dalian China. Unconfined compressive strength (UCS) of CSA-stabilized soil was tested and compared to ordinary Portland cement (OPC); meanwhile the influence of amounts of gypsum in CSA and cement contents in stabilized soils on the strength of stabilized soils were investigated. X-ray diffraction (XRD) tests were employed to detect generated hydration products, and scanning electron microscopy (SEM) was conducted to analyze microstructures of CSA-stabilized soils. The results showed that UCS of CSA-stabilized soils at 1, 3, and 28 d firstly increased and then decreased with contents of gypsum increasing from 0 to 40 wt.%, and CSA-stabilized soils exhibited the highest UCS when the content of gypsum equaled 25 wt.%. When the mixing amounts of OPC and CSA were the same, CSA-stabilized soils had a significantly higher early strength (1 and 3 d) than OPC. For CSA-stabilized soil with 0 wt.% gypsum, monosulfate (AFm) was detected as a major hydration product. As for CSA-stabilized soil with certain amounts of gypsum, the intensity of ettringite (Aft) was significantly higher than that in the sample hydrating without gypsum, but a tiny peak of AFm also could be detected in the sample with 15 wt.% gypsum at 28 d. Additionally, the intensity of AFt increased with the contents of gypsum increasing from 0 to 25 wt.%. When contents of gypsum increased from 25 to 40 wt.%, the intensity of AFt tended to decrease slightly, and residual gypsum could be detected in the sample with 40 wt.% gypsum at 28 d. In the microstructure of OPC-stabilized soils, hexagonal plate-shaped calcium hydroxide (CH) constituted skeleton structures, and clusters of hydrated calcium silicates (C-S-H) gel adhered to particles of soils. In the microstructure of CSA-stabilized soils, AFt constituted skeleton structures, and the crystalline sizes of ettringite increased with contents of gypsum increasing; meanwhile, clusters of the aluminum hydroxide (AH3) phase could be observed to adhere to particles of soils and strengthen the interaction.


2020 ◽  
Vol 9 (1) ◽  
pp. 998-1008
Author(s):  
Guo Li ◽  
Zheng Zhuang ◽  
Yajun Lv ◽  
Kejin Wang ◽  
David Hui

AbstractThree nano-CaCO3 (NC) replacement levels of 1, 2, and 3% (by weight of cement) were utilized in autoclaved concrete. The accelerated carbonation depth and Coulomb electric fluxes of the hardened concrete were tested periodically at the ages of 28, 90, 180, and 300 days. In addition, X-ray diffraction, thermogravimetry, and mercury intrusion porosimetry were also performed to study changes in the hydration products of cement and microscopic pore structure of concrete under autoclave curing. Results indicated that a suitable level of NC replacement exerts filling and accelerating effects, promotes the generation of cement hydration products, reduces porosity, and refines the micropores of autoclaved concrete. These effects substantially enhanced the carbonation and chloride resistance of the autoclaved concrete and endowed the material with resistances approaching or exceeding that of standard cured concrete. Among the three NC replacement ratios, the 3% NC replacement was the optimal dosage for improving the long-term carbonation and chloride resistance of concrete.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2514
Author(s):  
Zhengning Sun ◽  
Jian Zhou ◽  
Qiulin Qi ◽  
Hui Li ◽  
Na Zhang ◽  
...  

This paper aimed to report the effects of fly ash (FA) on the mechanical properties and hydration of calcium sulfoaluminate-activated supersulfated cement (CSA-SSC). The CSA-SSC comprises of 80% granulated blast furnace slag (GBFS), 15% anhydrite, and 5% high-belite calcium sulfoaluminate cement (HB-CSA) clinker. The hydration products of CSA-SSC with or without FA were investigated by X-ray diffraction and thermogravimetric analysis. The experimental results indicated that the addition of FA by 10% to 30% resulted in a decrease in the rate of heat evolution and total heat evolution of CSA-SSC. As the content of FA was increased in the CSA-SSC system, the compressive and flexural strengths of the CSA-SSC with FA after 1 day of hydration were decreased. After 7 days of hydration, the compressive and flexural strength of CSA-SSC mixed with 10 wt.% and 20 wt.% of FA rapidly increased and exceeded that of ordinary Portland cement (OPC), especially the flexural strength. Moreover, the compressive strength of CSA-SSC mixed with 30 wt.% of FA after 90 days of hydration was close to that of OPC, and flexural strength of CSA-SSC mixed with 30 wt.% of FA after 7 days of hydration was close to that of OPC. The hydration products of the CSA-SSC and CSA-SSC mixed with FA were mainly ettringite and calcium silicate hydrate (C-S-H).


2010 ◽  
Vol 168-170 ◽  
pp. 518-522 ◽  
Author(s):  
Zhi Hua Ou ◽  
Bao Guo Ma ◽  
Shou Wei Jian

Fourier Transform Infrared Spectroscopy (FT-IR), thermal analysis and X-Ray Diffraction (XRD) are commonly performed to study the hydration products in cement pastes. The three methods were compared in this frame to detect products of cement hydration at different ages, especially at early ages (before 24h ages). The results indicate from the present experiment that CH (Calcium hydroxide) can be detected by three methods at all ages; C-S-H can be distinguished by FT-IR at all ages; ettringite may be detected by FT-IR before 24h ages and by XRD at all ages; and monosulphate can be detected by FT-IR before 24h ages. The process of cement hydration, characterized by formation and development of some hydration products, can be clearly observed by three methods. FT-IR is suggested for detecting the major hydration products before 24h ages, FT-IR and XRD are suggested for detecting the major hydration products after 24h ages, and thermal analysis is suggested for analyzing the degree of hydration quantitatively.


2014 ◽  
Vol 599 ◽  
pp. 39-45 ◽  
Author(s):  
Bao Guo Ma ◽  
Hai Nan Li ◽  
Yan Chao Zhu ◽  
Lei Han ◽  
Xiang Guo Li

Calcium sulfoaluminate (CSA) cements were currently receiving a lot of attention because their manufacture produced less CO2 than ordinary Portland cement (OPC). However, it was essential to understand all parameters which might affect the hydration process. This work dealt with the effect of two nanostructured materials, such as nanoSiO2 (NS) and nanoTiO2 (NT), on the properties of CSA pastes during early hydration. Isothermal calorimetry, X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used to analyze the pastes. Results indicated that the influence of NS and NT on the early hydration of CSA showed different: when NS and NT were added by 5% (mass fraction), the early hydration of CSA cement can be significantly promoted by NS, and slightly accelerated by NT. X-ray diffraction and SEM analysis results showed that both of NS and NT can improve the microstructure of the cement pastes, which made the cement stone more uniform and dense. For the difference, during cement hydration, except for nucleation function, NS had a high pozzolanic activity. Whereas,the effect of NT on microstructure of hardened CSA-cement was mainly due to its seeding effect.


2001 ◽  
Vol 136 (3-4) ◽  
pp. 181-183 ◽  
Author(s):  
Nikos A. Voglis ◽  
Glykeria T. Kakali ◽  
Sotiris G. Tsivilis

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1072 ◽  
Author(s):  
Yeonung Jeong ◽  
Craig W. Hargis ◽  
Hyunuk Kang ◽  
Sung-Chul Chun ◽  
Juhyuk Moon

This study investigated the material properties and hydration characteristics of calcium sulfoaluminate cement (CSA) based mortars cured under 3 different initial curing temperatures. Two CSA cements with different M-values were selected. Obtained experimental results of mechanical properties, dimensional stability, and heat release were explained by hydration characteristics from X-ray diffraction, thermal gravimetric analysis, porosimetry, and thermodynamic modeling. Decomposition of ettringite decreased compressive strength but re-formation of ettringite after additional curing at 30 °C helped to recover the strength in CSA cement with a high amount of calcium sulfate. CSA cement with a low amount of calcium sulfate which was designed to predominantly have monosulfate as the main hydration product, showed increased 1-day strength after higher temperature curing but this occurred was at the expense of decreased 28-day strength.


2021 ◽  
Vol 11 (14) ◽  
pp. 6638
Author(s):  
Wenhao Zhao ◽  
Xuping Ji ◽  
Yaqing Jiang ◽  
Tinghong Pan

This work aims to study the effect of a nucleating agent on cement hydration. Firstly, the C-S-H crystal nucleation early strength agent (CNA) is prepared. Then, the effects of CNA on cement hydration mechanism, early strength enhancement effect, C-S-H content, 28-days hydration degree and 28-days fractal dimension of hydration products are studied by hydration kinetics calculation, resistivity test, BET specific surface area test and quantitative analysis of backscattered electron (BSE) images, respectively. The results show that CNA significantly improves the hydration degree of cement mixture, which is better than triethanolamine (TEA). CNA shortens the beginning time of the induction period by 49.3 min and the end time of the cement hydration acceleration period by 105.1 min than the blank sample. CNA increases the fractal dimension of hydration products, while TEA decreases the fractal dimension. CNA significantly improves the early strength of cement mortars; the 1-day and 3-days strength of cement mortars with CNA are more than the 3-days and 7-days strength of the blank sample. These results will provide a reference for the practical application of the C-S-H nucleating agent.


Sign in / Sign up

Export Citation Format

Share Document