scholarly journals Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2068
Author(s):  
Sergio A. Bernal-Chávez ◽  
María Luisa Del Prado-Audelo ◽  
Isaac H. Caballero-Florán ◽  
David M. Giraldo-Gomez ◽  
Gabriela Figueroa-Gonzalez ◽  
...  

Nanoparticles possess a huge potential to be employed in numerous biomedical purposes; their applications may include drug delivery systems, gene therapy, and tissue engineering. However, the in vivo use in biomedical applications requires that nanoparticles exhibit sterility. Thus, diverse sterilization techniques have been developed to remove or destroy microbial contamination. The main sterilization methods include sterile filtration, autoclaving, ionizing radiation, and nonionizing radiation. Nonetheless, the sterilization processes can alter the stability, zeta potential, average particle size, and polydispersity index of diverse types of nanoparticles, depending on their composition. Thus, these methods may produce unwanted effects on the nanoparticles’ characteristics, affecting their safety and efficacy. Moreover, each sterilization method possesses advantages and drawbacks; thus, the suitable method’s choice depends on diverse factors such as the formulation’s characteristics, batch volume, available methods, and desired application. In this article, we describe the current sterilization methods of nanoparticles. Moreover, we discuss the advantages and drawbacks of these methods, pointing out the changes in nanoparticles’ biological and physicochemical characteristics after sterilization. Our main objective was to offer a comprehensive overview of terminal sterilization processes of nanoparticles for biomedical applications.

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Noriko Nakamura ◽  
Yuki Mochida ◽  
Kazuko Toh ◽  
Shigeto Fukushima ◽  
Horacio Cabral ◽  
...  

Self-assembled supramolecular structures based on polyion complex (PIC) formation between oppositely charged polymers are attracting much attention for developing drug delivery systems able to endure harsh in vivo environments. As controlling polymer complexation provides an opportunity for engineering the assemblies, an improved understanding of the PIC formation will allow constructing assemblies with enhanced structural and functional capabilities. Here, we focused on the influence of the mixing charge ratio between block aniomers and catiomers on the physicochemical characteristics and in vivo biological performance of the resulting PIC micelles (PIC/m). Our results showed that by changing the mixing charge ratio, the structural state of the core was altered despite the sizes of PIC/m remaining almost the same. These structural variations greatly affected the stability of the PIC/m in the bloodstream after intravenous injection and determined their biodistribution.


2017 ◽  
Vol 6 (6) ◽  
pp. 517-526 ◽  
Author(s):  
Permender Rathee ◽  
Anjoo Kamboj ◽  
Shabir Sidhu

AbstractBackground:Piperine helps in the improvement of bioavailability through pharmacokinetic interaction by modulating metabolism when administered with other drugs. Nisoldipine is a substrate for cytochrome P4503A4 enzymes. The study was undertaken to assess the influence of piperine on the pharmacokinetics and pharmacodynamics of nisoldipine nanoparticles in rats.Methods:Optimization studies of nanoparticles were performed using Taguchi L9 orthogonal array, and the nanoparticles were formulated by the precipitation method. The influence of piperine and nanoparticles was evaluated by means of in vivo kinetic and dynamic studies by oral administration in rats.Results:The entrapment efficiency, drug loading, ζ potential, and average particle size of optimized nisoldipine-piperine nanoparticles was 89.77±1.06%, 13.6±0.56%, −26.5 mV, and 132±7.21 nm, respectively. The in vitro release in 0.1 n HCl and 6.8 pH phosphate buffer was 96.9±0.48% and 98.3±0.26%, respectively. Pharmacokinetic studies showed a 4.9-fold increase in oral bioavailability and a >28.376±1.32% reduction in systemic blood pressure by using nanoparticles as compared to control (nisoldipine suspension) in Wistar rats.Conclusion:The results revealed that piperine being an inhibitor of cytochrome P4503A4 enzymes enhanced the bioavailability of nisoldipine by 4.9-fold in nanoparticles.


2020 ◽  
Author(s):  
Hongwu Sun ◽  
Yun Yang ◽  
Shuang Ge ◽  
Zhen Song ◽  
Anni Zhao ◽  
...  

Abstract Synthetic epitope peptide are not suitable for nasal administration due to its weak immunogenic and low delivery efficiency. In this work, we developed a intranasal epitope nanovaccine (I-OVA NE) which can prolong mucosal retention and enhance CTL activity induced by epitopes. I-OVA NE was a nanoemulsion system that assembled with IKVAV-OVA257-264(I-OVA) conjugated peptides.This nanovaccine with I-OVA at a concentration of 4 mg/mL showed the average particle size of 30.37±2.49 nm, zeta potential of -16.67±1.76 mV, and encapsulation rate of 84.07±7.59%. I-OVA NE particles exhibit smooth and spherical surfaces, good dispersibility and no obvious aggregation. Moreover, the physicochemical characteristics (size, PdI and zeta potential) of this vaccine did not significantly change in the condition of mucin exist. I-OVA NE had no significant cytotoxic effects on BEAS-2B cells, and no obvious acute pathological changes were observed on nasal mucosa or lung tissue in the mice after nasal immunization. We found that I-OVA NE prolonged the nasal residence time, promoted the cellular uptake of the epitope peptide and improved the antigen uptake efficiency of BEAS-2B cells, but this effect was significantly decreased after integrin blockade. Importantly, the level of Th1 cytokines and the proportion of epitope-specific CD8+ T cells increased significantly, and thus I-OVA NE protected E.G7/OVA tumor-bearing mice by suppressing tumour growth and provoking anti-tumour immune activation. Overall, these data indicate that I-OVA NE can be an applicable strategy for tumor vaccine design.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1089
Author(s):  
Beomjin Park ◽  
Semi Yoon ◽  
Yonghyun Choi ◽  
Jaehee Jang ◽  
Soomin Park ◽  
...  

A micro/nanobubble (MNB) refers to a bubble structure sized in a micrometer or nanometer scale, in which the core is separated from the external environment and is normally made of gas. Recently, it has been confirmed that MNBs can be widely used in angiography, drug delivery, and treatment. Thus, MNBs are attracting attention as they are capable of constructing a new contrast agent or drug delivery system. Additionally, in order to effectively use an MNB, the method of securing its stability is also being studied. This review highlights the factors affecting the stability of an MNB and the stability of the MNB within the ultrasonic field. It also discusses the relationship between the stability of the bubble and its applicability in vivo.


2019 ◽  
Vol 31 (1) ◽  
pp. 225
Author(s):  
N. Gupta ◽  
K. Polkoff ◽  
L. Qiao ◽  
K. Cheng ◽  
J. Piedrahita

CRISPR/Cas systems present a powerful gene-editing tool with the potential for widespread therapeutic use; however, current methods of in vivo delivery such as adeno-associated viruses (AAV) may stimulate an immune response, creating the need for an alternative for delivery of CRISPR/Cas9. Exosomes are small vesicles that are released by cells and serve as a delivery system for RNA, proteins, and various molecules to other cells. The focus of this project was to use exosomes as a delivery system for Cas9, exploiting their high uptake by target cells and their ability to avoid the immune system in vivo. Porcine fetal fibroblasts (PFF) were grown to 80% confluency; after 48h, exosomes were isolated and concentrated from conditioned media by filtration with a 0.22-μm filter followed by 100-kDa molecular weight cutoff filter. Transmission electron microscopy, Western blotting for presence of CD81, and an uptake assay for exosomes stained with the lipophilic dye DiI (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA) were used to characterise isolated exosomes, and average particle size was evaluated by NanoSight (Salisbury, United Kingdom). After characterisation, exosomes were loaded with Cas9 (PNA Bio, Newbury Park, CA, USA) using sonication, incubation with saponin, or extrusion. For each method of loading, 1.0×1011 exosomes and 500ng of Cas9 were used. For sonication, exosomes and Cas9 were sonicated 4 times: 4s on/2s off, left on ice for 2min, and then repeated for 4 more cycles. Loaded exosomes were then incubated at 37°C for 20min. For incubation with saponin, 100μL of 0.6% saponin solution was made in PBS, mixed with exosomes and Cas9, and then incubated on a shaker at 800 rpm for 20min. For extrusion, exosomes and Cas9 were extruded (Avanti Polar Lipids, Alabaster, AL, USA) 10, 15, or 20 times through a 0.22-μm filter. To evaluate efficiency of Cas9 loading into exosomes, loaded exosome samples were split in half, with one-half receiving a proteinase K digest (100μg mL−1) to remove free Cas9 and the other receiving no treatment. Proteinase K-treated and untreated samples were then compared side by side on Western blot staining for Cas9. ImageJ software (National Institutes for Health, Bethesda, MD, USA) was used to quantify band intensity and loading efficiency. With optimal conditions, our preliminary results show loading efficiency for sonication and saponin to be 16.7 and 19.2%, respectively, whereas loading by extrusion was undetectable. For CRISPR/Cas targeting, transgenic PFF carrying one copy of H2B-GFP were used to test delivery of ribonucleotide protein complex (RNP). To verify efficiency of the guide (g)RNA targeting green fluorescent protein (GFP), cells were nucleofected with Cas9 and gRNA. The DNA was extracted, PCR amplified, and sequenced (Eton Bioscience, San Diego, CA, USA) and then evaluated for indels with TIDE, resulting in a 53.2% cleavage efficiency. Next, exosomes will be loaded with RNP to knockout GFP in H2B-GFP cells, and targeting efficiency will be evaluated by flow cytometry and TIDE. We hypothesise that based on loading efficiency and target cell uptake, exosomes will present a safe and efficient method for in vitro and in vivo delivery of Cas9. The financial support of the Comparative Medicine Institute is gratefully acknowledged.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 589 ◽  
Author(s):  
Chang-baek Lim ◽  
Sharif Md Abuzar ◽  
Pankaj Ranjan Karn ◽  
Wonkyung Cho ◽  
Hee Jun Park ◽  
...  

Here, we aimed to prepare and optimize liposomal amphotericin B (AmB) while using the supercritical fluid of carbon dioxide (SCF-CO2) method and investigate the characteristics and pharmacokinetics of the SCF-CO2-processed liposomal AmB. Liposomes containing phospholipids, ascorbic acid (vit C), and cholesterol were prepared by the SCF-CO2 method at an optimized pressure and temperature; conventional liposomes were also prepared using the thin film hydration method and then compared with the SCF-CO2-processed-liposomes. The optimized formulation was evaluated by in vitro hemolysis tests on rat erythrocytes and in vivo pharmacokinetics after intravenous administration to Sprague-Dawley rats and compared with a marketed AmB micellar formulation, Fungizone®, and a liposomal formulation, AmBisome®. The results of the characterization studies demonstrated that the SCF-CO2-processed-liposomes were spherical particles with an average particle size of 137 nm (after homogenization) and drug encapsulation efficiency (EE) was about 90%. After freeze-drying, mean particle size, EE, and zeta potential were not significantly changed. The stability study of the liposomes showed that liposomal AmB that was prepared by the SCF method was stable over time. In vivo pharmacokinetics revealed that the SCF-CO2-processed-liposomes were bioequivalent to AmBisome®; the hemolytic test depicted less hematotoxicity than Fungizone®. Therefore, this method could serve as a potential alternative for preparing liposomal AmB for industrial applications.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Yumei Lian ◽  
Xuerui Wang ◽  
Pengcheng Guo ◽  
Yichen Li ◽  
Faisal Raza ◽  
...  

Arsenic trioxide (ATO) has a significant effect on the treatment of acute promyelocytic leukemia (APL) and advanced primary liver cancer, but it still faces severe side effects. Considering these problems, red blood cell membrane-camouflaged ATO-loaded sodium alginate nanoparticles (RBCM-SA-ATO-NPs, RSANs) were developed to relieve the toxicity of ATO while maintaining its efficacy. ATO-loaded sodium alginate nanoparticles (SA-ATO-NPs, SANs) were prepared by the ion crosslinking method, and then RBCM was extruded onto the surface to obtain RSANs. The average particle size of RSANs was found to be 163.2 nm with a complete shell-core bilayer structure, and the average encapsulation efficiency was 14.31%. Compared with SANs, RAW 264.7 macrophages reduced the phagocytosis of RSANs by 51%, and the in vitro cumulative release rate of RSANs was 95% at 84 h, which revealed a prominent sustained release. Furthermore, it demonstrated that RSANs had lower cytotoxicity as compared to normal 293 cells and exhibited anti-tumor effects on both NB4 cells and 7721 cells. In vivo studies further showed that ATO could cause mild lesions of main organs while RSANs could reduce the toxicity and improve the anti-tumor effects. In brief, the developed RSANs system provides a promising alternative for ATO treatment safely and effectively.


2020 ◽  
Vol 23 (10) ◽  
pp. 338-345
Author(s):  
Ngatijo Ngatijo ◽  
Restina Bemis ◽  
Abdul Aziz ◽  
Rahmat Basuki

Chromium (VI) in the form of chromate anions that have toxic properties needs to be overcome. This study aims to reinforce cationic sorbent quaternary amine-modified silica with magnetite (QAMS-Fe3O4) to adsorb chromate ions. QAMS prepared by reflux methylation ammine modified silica (AMS) obtained from destruction silicate from rice husk ash followed by the addition of 3-APTMS. Characterization QAMS-Fe3O4 by FT-IR showed successfully of methylation process indicated by disappearing absorbance at 1388 cm-1, and emerging absorbance at 2939 cm-1 in QAMS and QAMS-Fe3O4 indicated a transformation of N-H from -NH2 group to [-N+(CH3)3]. XRD analysis denotes 2θ = 30.15°, 35.53°, 43.12°, 57.22°, and 62.90° (JCPDS No. 00-033-0664) fathomed as a characteristic peak of magnetite. SEM-EDX reveals the homogenous topological spherical form with an average particle size 0.006 µm that is dominated by Si element (52.81%) with magnetic moment value = 34.1 emu/g. The stability test shows that this material stable in an acid condition. The adsorption of chromate ions was conducted by the SPA method. Optimal pH obtained by pH range 4-7 with more than 90% adsorbed chromate ions. Variation of increasing series flow rate from 0.05 to 1.5 mL min-1 resulted in decreased adsorbed chromate ions. The use of SPA methods offered simpler and easier handling than the batch method without overriding the adsorption process effectiveness.


2009 ◽  
Vol 19 (1) ◽  
pp. 19-25
Author(s):  
Pham Hoai Linh ◽  
Tran Dang Thanh ◽  
Do Hung Manh ◽  
Nguyen Chi Thuan ◽  
Le Van Hong ◽  
...  

In this paper, we report results on the fabrication and magnetic properties of spinel ferrite Mn1-xZnxFe2O4 (0 ≤ x ≤ 0.8) nanoparticles. The nanoparticles were synthesized by a co-precipitation method. The effects of substituting Zn for Mn on the magnetic properties and particles size were focused. It was found that the phase-formation temperature is 90OC and the average particle size decreases from 40 nm to 10 nm when increased Zn concentration from zero to 0.8. The Curie temperature TC strongly decreases from 585 K (x = 0) to 320 K (x = 0.8) concomitantly with a decrease of the saturation magnetization MS. With a TC of 320 K and MS of 17 emu/g, the x=0.8 sample could be a promising candidate for some biomedical applications.


2018 ◽  
Vol 13 (2) ◽  
pp. 111 ◽  
Author(s):  
Yadi Suryadi ◽  
Tri Puji Priyatno ◽  
I Made Samudra ◽  
Dwi Ningsih Susilowati ◽  
Tuti Septi Sriharyani ◽  
...  

<p>Anthracnose (Colletotrichum gloeosporioides) is one of the important diseases of fruit crops that need to be controlled. This study was aimed to obtain the best formula of hydrolyzed nano chitosan and its potensial in controlling anthracnose. The hydrolyzed chitosan was prepared using chitinase enzyme extracted from Burkholderia cepacia isolate E76. Chitosan nanoparticles were synthesized using ionic gelation method by reacting hydrolyzed chitosan (0.2%) with Sodium tripolyphosphate (STPP) (0.1%) as cross-linking agent using 30&amp;ndash;60 minutes stirring condition. The bioactivity of the nano chitosan formula was tested to C. gloeosporioides under in vitro and in vivo assays. The specific enzymatic activity of the purified chitinase was higher (0.19 U/mg) than that of crude enzyme (supernatant) with the purity increased by 3.8 times. Of the four formula tested, Formula A (hydrolyzed chitosan to STPP volume ratio of 5 : 1 with 60 minutes stirring condition) was found good in terms of physical characteristic of the particle. The formula nano chitosan particle had the spherical-like shape with an average particle size of 126.2+3.8 nm, polydispersity index (PI) of 0.4+0.02, and zeta potential (ZP) value of 27.8+0.2 mV. Nano chitosan had an inhibitory activity to C. gloeosporioides in vitro up to 85.7%. Moreover, it could inhibit 61.2% of C. gloeosporioides spores germination. It was shown that nano chitosan was also effective to reduce anthracnose disease severity in vivo when applied as a preventive measure on chili and papaya fruits. This study could be used as a reference for further fruit coating application using nano chitosan as a promising postharvest biocontrol agent to C. gloeosporioides.</p>


Sign in / Sign up

Export Citation Format

Share Document