scholarly journals An Overview of the Chemical Characteristics, Bioactivity and Achievements Regarding the Therapeutic Usage of Acetogenins from Annona cherimola Mill

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2926
Author(s):  
Alexandra G. Durán ◽  
M. Teresa Gutiérrez ◽  
Francisco J. R. Mejías ◽  
José M. G. Molinillo ◽  
Francisco A. Macías

Annona cherimola Mill., or the custard apple, is one of the species belonging to the Annonaceae family, is widely used in traditional medicine, and has been reported to be a valuable source of bioactive compounds. A unique class of secondary metabolites derived from this family are Annonaceous acetogenins, lipophilic polyketides considered to be amongst the most potent antitumor compounds. This review provides an overview of the chemical diversity, isolation procedures, bioactivity, modes of application and synthetic derivatives of acetogenins from A. cherimola Mill.

2013 ◽  
Vol 50 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Ewa Kochan ◽  
Aleksander Chmiel

Abstract:Asian ginseng (Panax ginseng) and American ginseng (P. quinquefolius) are valuable medicinal herbs whose roots have been used for ages in traditional medicine in China and North America as vitalizing and stimulating agents. The roots are obtained mainly from field cultivation, which is a slow (5-7 years long), laborious, and troublesome process; so in vitro methods started to be used to produce ginseng biomass. In our study, non-organogenic callus of P. quinquefolius synthesized the same active substances like field roots, for more than 6 years. The ginsenosides are derivatives of protopanaxadiol (Rb1, Rb2, Rc, Rd) or protopanaxatriol (Rg1, Re). The synthesis of Rg1and Re metabolites is preferred in calli cultured in the dark and with ageing of culture.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 477 ◽  
Author(s):  
Figuerola ◽  
Avila

Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.


2015 ◽  
Vol 10 (7) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Maurice Ducret Awouafack ◽  
Pierre Tane ◽  
Michael Spiteller ◽  
Jacobus Nicolaas Eloff

Many flavonoids have so far been isolated as main secondary metabolites in plant species of the genus Eriosema (Fabaceae), which contains approximately 160 species. A total of 52 flavonoids including isoflavones, dihydroflavonols, flavonols, flavanones, dihydrochalcones, isoflavanone and their pyrano or glucoside derivatives were isolated and characterized from the five species of this genus investigated to date. Total synthesis and semi-synthesis (acetylation, methylation, hydrogenation, and cyclization) of some isolated flavonoids were reported. Due to several significant pharmacological properties (antimicrobial, cytotoxicity, anti-mycobacterial, antioxidant, antiviral, erectile-dysfunction, vasodilatory and hypoglycemic) of the isolated flavonoids and derivatives, more scientists should be interested in investigating Eriosema species. The present review is the first to document all flavonoids that have been reported from the genus Eriosema to date together with their synthetic and semi-synthetic derivatives, and their pharmacological properties. Dihydrochalcones, which are precursors of other classes of flavonoids, are very rare in natural sources and their isolation from Eriosema species may explain the large number of flavonoids found in this genus. It appears that isoflavone could be a marker for species in this genus. The 83 flavonoids (1–83) documented include 52 isolates, 31 semi-synthetic and 3 totally synthetic derivatives. Data were obtained from Google scholar, Pubmed, Scifinder, Sciencedirect, and Scopus. With 52 different flavonoids isolated from only 5 of the approximately 160 species it shows the remarkable chemical diversity of this genus. This compilation of the biological activities and chemical composition may renew the interest of pharmacologists and phytochemists in this genus.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
P Terrazas ◽  
O Sterner

2019 ◽  
Vol 18 (10) ◽  
pp. 1417-1424 ◽  
Author(s):  
Emilia Naydenova ◽  
Diana Wesselinova ◽  
Svetlana Staykova ◽  
Ivan Goshev ◽  
Ljubomir Vezenkov

Background: Based on the structure of RC-121 (D-Phe-c (Cys-Tyr-D-Trp-Lys-Val-Cys)-Thr-NH2, - synthetic derivatives of somatostatin), some analogs were synthesized and tested for in vitro cytotoxic and antioxidant activity. Objectives: The new analogs were modifyed at position 5 with Dap (diaminopropanoic acid), Dab (diaminobutanoic acid) and Orn and at position 6 with the unnatural amino acids Tle (t-leucine). Methods: The in vitro cytotoxic effects of the substances were investigated against a panel of human tumor cell lines HT-29 (Human Colorectal Cancer Cell Line), MDA-MB-23 (Human Breast Cancer Cell Line), Hep G-2 (Human Hepatocellular Carcinoma Cell Line) and HeLa (cervical cancer cell line). The antioxidant capacities were tested by ORAC (Oxygen Radical Antioxidant Capacity) and HORAC (Hydroxyl Radical Averting Capacity) methods. Results: All substances expressed significantly higher antioxidant capacity by comparison with galic acid and Trolox. All substances showed considerable antioxidant capacity as well. Compound 2T (D-Phe-c(Cys-Tyr-DTrp- Dap-Tle-Cys)-Thr-NH2)had the highest antioxidant effect. The compound 4T (D-Phe-c(Cys-Tyr-D-Trp- Orn-Tle-Cys)-Thr-NH2) displayed antiproliferative effect on HeLa cells with IC50 30 µM. The peptide analog 3T (D-Phe-c(Cys-Tyr-D-Trp-Lys-Tle-Cys)-Thr-NH2) exerted the most pronounced inhibition on the cell vitality up to 53%, 56% and 65% resp. against MDA-MB-23, Hep G-2, HeLa in the higher tested concentration. Conclusion: The somatostatin analogs showed moderate influence on the vitality of different tumor cells and could be used in changing their pathology.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 957
Author(s):  
Mamona Nazir ◽  
Muhammad Saleem ◽  
Muhammad Imran Tousif ◽  
Muhammad Aijaz Anwar ◽  
Frank Surup ◽  
...  

Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


2016 ◽  
Vol 10 (3) ◽  
pp. 314-321 ◽  
Author(s):  
Rayane Carneiro dos Santos ◽  
◽  
Marlon Cristian Toledo Pereira ◽  
Débora Souza Mendes ◽  
Raquel Rodrigues Soares Sobral ◽  
...  

Author(s):  
A. E. Shchekotikhin ◽  
Georgy Y. Nadysev ◽  
Alexander S. Tikhomirov ◽  
Lyubov G. Dezhenkova

Sign in / Sign up

Export Citation Format

Share Document