scholarly journals Tailoring the Thermal Conductivity of Rubber Nanocomposites by Inorganic Systems: Opportunities and Challenges for Their Application in Tires Formulation

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3555
Author(s):  
Lorenzo Mirizzi ◽  
Mattia Carnevale ◽  
Massimiliano D’Arienzo ◽  
Chiara Milanese ◽  
Barbara Di Di Credico ◽  
...  

The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon-based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers’ incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler’s loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2191
Author(s):  
Andrzej Rybak ◽  
Lukasz Malinowski ◽  
Agnieszka Adamus-Wlodarczyk ◽  
Piotr Ulanski

The evaluation of a possible application of functional shrinkable materials in thermally conductive electrical insulation elements was investigated. The effectiveness of an electron beam and gamma radiation on the crosslinking of a selected high density polyethylene grade was analyzed, both qualitatively and quantitatively. The crosslinked polymer composites filled with ceramic particles were successfully fabricated and tested. On the basis of the performed investigation, it was concluded that the selected filler, namely a boron nitride powder, is suitable for the preparation of the crosslinked polymer composites with enhanced thermal conductivity. The shape memory effect was fully observed in the crosslinked samples with a recovery factor reaching nearly 99%. There was no significant influence of the crosslinking, stretching, and recovery of the polymer composite during shape memory phenomenon on the value of thermal conductivity. The proposed boron nitride filled polyethylene composite subjected to crosslinking is a promising candidate for fabrication of thermally shrinkable material with enhanced heat dissipation functionality for application as electrically insulating components.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Han Su ◽  
Cherng-Yuh Su ◽  
Cheng-Ta Cho ◽  
Chung-Hsuan Lin ◽  
Guan-Fu Jhou ◽  
...  

Abstract The issue of electronic heat dissipation has received much attention in recent times and has become one of the key factors in electronic components such as circuit boards. Therefore, designing of materials with good thermal conductivity is vital. In this work, a thermally conductive SBP/PU composite was prepared wherein the spherical h-BN@PMMA (SBP) composite powders were dispersed in the polyurethane (PU) matrix. The thermal conductivity of SBP was found to be significantly higher than that of the pure h-BN/PU composite at the same h-BN filler loading. The SBP/PU composite can reach a high thermal conductivity of 7.3 Wm−1 K−1 which is twice as high as that of pure h-BN/PU composite without surface treatment in the same condition. This enhancement in the property can be attributed to the uniform dispersion of SBP in the PU polymer matrix that leads to a three-dimensional continuous heat conduction thereby improving the heat diffusion of the entire composite. Hence, we provide a valuable method for preparing a 3-dimensional heat flow path in polyurethane composite, leading to a high thermal conductivity with a small amount of filler.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 484 ◽  
Author(s):  
Heeseok Song ◽  
Byoung Kim ◽  
Yong Kim ◽  
Youn-Sang Bae ◽  
Jooheon Kim ◽  
...  

In this study, thermally conductive composite films were fabricated using an anisotropic boron nitride (BN) and hybrid filler system mixed with spherical aluminum nitride (AlN) or aluminum oxide (Al2O3) particles in a polyimide matrix. The hybrid system yielded a decrease in the through-plane thermal conductivity, however an increase in the in-plane thermal conductivity of the BN composite, resulting from the horizontal alignment and anisotropy of BN. The behavior of the in-plane thermal conductivity was theoretically treated using the Lewis–Nielsen and modified Lewis–Nielsen theoretical prediction models. A single-filler system using BN exhibited a relatively good fit with the theoretical model. Moreover, a hybrid system was developed based on two-population approaches, the additive and multiplicative. This development represented the first ever implementation of two different ceramic conducting fillers. The multiplicative-approach model yielded overestimated thermal conductivity values, whereas the additive approach exhibited better agreement for the prediction of the thermal conductivity of a binary-filler system.


Author(s):  
Muhammad Omer Khan ◽  
Ellen Chan ◽  
Siu N. Leung ◽  
Hani Naguib ◽  
Francis Dawson ◽  
...  

This paper studies the development of new multifunctional liquid crystal polymeric composites filled with graphene nano platelets (GNPs) for electronic packaging applications. A series of parametric studies were conducted to study the effect of GNP content on the thermal conductivity of LCP-based nanocomposites. Graphene, ranging from 10 wt. % to 50 wt. %, were melt-compounded with LCP using a twin-screw compounder. The extrudates were ground and compression molded into small disc-shaped specimens. The thermal conductivity of LCP matrix was observed to have increased by more than 1000% where as the electrical conductivity increased by 13 orders of magnitude with the presence of 50 wt% GNP fillers. The morphology of the composites was analyzed using SEM micrographs to observe the dispersion of filler within the matrix. These thermally conductive composites represent potential cost-effective materials to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.


2017 ◽  
Vol 35 (2) ◽  
pp. 382-389 ◽  
Author(s):  
Lukasz Jarosinski ◽  
Andrzej Rybak ◽  
Karolina Gaska ◽  
Grzegorz Kmita ◽  
Renata Porebska ◽  
...  

Abstract Efficient heat dissipation from modern electronic devices is a key issue for their proper performance. An important role in the assembly of electronic devices is played by polymers, due to their simple application and easiness of processing. The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite. The aim of the presented work is to examine a possibility of increasing the thermal conductivity of the filled epoxy resin systems, applicable for electrical insulation, by the use of composites filled with graphene nanoplatelets. It is remarkable that the addition of only 4 wt.% of graphene could lead to 132 % increase in thermal conductivity. In this study, several new aspects of graphene composites such as sedimentation effects or temperature dependence of thermal conductivity have been presented. The thermal conductivity results were also compared with the newest model. The obtained results show potential for application of the graphene nanocomposites for electrical insulation with enhanced thermal conductivity. This paper also presents and discusses the unique temperature dependencies of thermal conductivity in a wide temperature range, significant for full understanding thermal transport mechanisms.


2017 ◽  
Vol 114 (9) ◽  
pp. 2143-2148 ◽  
Author(s):  
Michael D. Bartlett ◽  
Navid Kazem ◽  
Matthew J. Powell-Palm ◽  
Xiaonan Huang ◽  
Wenhuan Sun ◽  
...  

Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m−1⋅K−1) over the base polymer (0.20 ± 0.01 W⋅m−1·K−1) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m−1·K−1) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal−mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot.


2019 ◽  
Vol 32 (3) ◽  
pp. 324-333 ◽  
Author(s):  
Ting Fei ◽  
Yanbao Li ◽  
Baocheng Liu ◽  
Chengbo Xia

Polymer-based composites with high thermal conductivity have great potential application as thermal management materials. This study was devoted to improving the thermal conductivity of the flexible thermoplastic polyurethane (TPU) by employing boron nitride (BN) as heat filler. We prepared flexible and thermally conductive TPU/BN composite via solution mixing and hot pressing. The thermal conductivity of the TPU/BN composite with 50 wt% BN (32.6 vol%) reaches 3.06 W/m·K, approximately 1290% enhancement compared to that of pure TPU (0.22 W/m·K). In addition, the thermal conductivity of our flexible TPU/BN composite with 30 wt% BN is almost not varied (a decrease of only 2.5%) after 100 cycles of mechanical bending, which indicates the high stability of heat conduction of our flexible TPU/BN composite under mechanical bending. The maximum tensile strength of the TPU/BN composite with 5 wt% BN is 48.9 MPa, 14% higher than that of pure TPU (43.2 MPa). Our flexible and highly thermally conductive TPU/BN composites show promise for heat dissipation in various applications in the electronics field.


2016 ◽  
Vol 36 (9) ◽  
pp. 877-889 ◽  
Author(s):  
Christopher Igwe Idumah ◽  
Azman Hassan

Abstract Exfoliated graphite nanoplatelet (GNP) polypropylene (PP)/kenaf fiber (KF) hybrid nanocomposites (PP/KF/MAPP/GNP collectively presented as PKMG) were developed through melt extrusion using a co-rotating screw speed extruder. The loadings of GNPs in nanocomposites were varied from 1–5 phr and characterized for thermal conductivity, stability and behavior, morphology, and heat deflection temperature (HDT). Results revealed increasing effective thermal conductivity with increasing inclusion of GNP. This behavior was attributed to the formation of thermally conductive, interconnected, sheets of GNP which enhanced heat dissipation. Thermal stability analysis revealed high thermal residue content at 3 phr loading attributed to uniform dispersion of GNP sheets in polymer matrix and the formation of enhanced oxygen-barrier due to effective char formation. Results also revealed enhanced HDT (0.46 MPa/1.8 MPa) with increasing incorporation of GNP ascribed to high modulus and thermal stability of GNP sheets. This implies capability of material to sustain loading at high temperatures without losing its rigidity. Thermal behavior revealed increased crystallization temperature and reduced degree of crystallization with slight increase in melting temperature in the range of 2–5°C. Morphological analysis using transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) revealed exfoliated and uniform dispersion of graphene in matrix polymer at 3 phr loading.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1661 ◽  
Author(s):  
Lee ◽  
Lee ◽  
Kim ◽  
Noda ◽  
Shim ◽  
...  

We investigated the heat transfer behavior of thermally conductive networks with one-dimensional carbon materials to design effective heat transfer pathways for hybrid filler systems of polymer matrix composites. Nano-sized few-walled carbon nanotubes (FWCNTs) and micro-sized mesophase pitch-based carbon fibers (MPCFs) were used as the thermally conductive materials. The bulk density and thermal conductivity of the FWCNT films increased proportionally with the ultrasonication time due to the enhanced dispersibility of the FWCNTs in an ethanol solvent. The ultrasonication-induced densification of the FWCNT films led to the effective formation of filler-to-filler connections, resulting in improved thermal conductivity. The thermal conductivity of the FWCNT-MPCF hybrid films was proportional to the MPCF content (maximum thermal conductivity at an MPCF content of 60 wt %), indicating the synergistic effect on the thermal conductivity enhancement. Moreover, the MPCF-to-MPCF heat transfer pathways in the FWCNT-MPCF hybrid films were the most effective in achieving high thermal conductivity due to the smaller interfacial area and shorter heat transfer pathway of the MPCFs. The FWCNTs could act as thermal bridges between neighboring MPCFs for effective heat transfer. Furthermore, the incorporation of Ag nanoparticles of approximately 300 nm into the FWCNT-MPCF hybrid film dramatically enhanced the thermal conductivity, which was closely related to a decreased thermal interfacial resistance at the intersection points between the materials. Epoxy-based composites loaded with the FWCNTs, MPCFs, FWCNT-MPCF hybrids, and FWCNT-MPCF-Ag hybrid fillers were also fabricated. A similar trend in thermal conductivity was observed in the polymer matrix composite with carbon-based hybrid films.


2016 ◽  
Vol 879 ◽  
pp. 909-914 ◽  
Author(s):  
Alexander Katz-Demyanetz ◽  
Rosario Squatrito ◽  
Ivan Todaro ◽  
Shai Essel ◽  
Henning Zeidler ◽  
...  

This work focuses on the production of new high conductive carbon based MMC (Metal Matrix Composites) or co-cast components obtained by casting processes. These novel thermally conductive structures are designed to face modern heat management challenges in critical fields such as power micro-electronics, automotive and aerospace industries, renewable energy generation as well as highest performance combustion engines. The sought parts will be assembled by different heat conductive aluminum-carbon composites and for this reason different heat conductive MMCs have been studied. Their combination into once cast aluminum part may allow the part to meet applicative needs for heat management challenges. The cast production routes as well as thermal behavior of the obtained materials has been studied by means of numerical (Finite Element Methods) approaches in order to determine the effective thermal conductivity in the different directions of heat dissipation. Some kinds of casting methods have been FEM simulated and then performed practically. TPG/aluminum interface microstructure has been studied.


Sign in / Sign up

Export Citation Format

Share Document