scholarly journals Supramolecular Chemistry: Host–Guest Molecular Complexes

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3995
Author(s):  
Sadaf Bashir Khan ◽  
Shern-Long Lee

In recent times, researchers have emphasized practical approaches for capturing coordinated and selective guest entrap. The physisorbed nanoporous supramolecular complexes have been widely used to restrain various guest species on compact supporting surfaces. The host–guest (HG) interactions in two-dimensional (2D) permeable porous linkages are growing expeditiously due to their future applications in biocatalysis, separation technology, or nanoscale patterning. The different crystal-like nanoporous network has been acquired to enclose and trap guest molecules of various dimensions and contours. The host centers have been lumped together via noncovalent interactions (such as hydrogen bonds, van der Waals (vdW) interactions, or coordinate bonds). In this review article, we enlighten and elucidate recent progress in HG chemistry, explored via scanning tunneling microscopy (STM). We summarize the synthesis, design, and characterization of typical HG structural design examined on various substrates, under ambient surroundings at the liquid-solid (LS) interface, or during ultrahigh vacuum (UHV). We emphasize isoreticular complexes, vibrant HG coordination, or hosts functional cavities responsive to the applied stimulus. Finally, we critically discuss the significant challenges in advancing this developing electrochemical field.

COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


2008 ◽  
Vol 92 (2) ◽  
pp. 022904 ◽  
Author(s):  
Y. C. Ong ◽  
D. S. Ang ◽  
K. L. Pey ◽  
Z. R. Wang ◽  
S. J. O’Shea ◽  
...  

2016 ◽  
Vol 42 ◽  
pp. 14-46 ◽  
Author(s):  
Oleg G. Lysenko ◽  
Vladimir I. Grushko ◽  
Sergey N. Dub ◽  
Eugene I. Mitskevich ◽  
Nikolay V. Novikov ◽  
...  

Nanoscale experiments with diamond tip that include processing, visualization and tunneling spectroscopy of the surface are presented. Single crystal diamond synthesized by the temperature gradient method under high pressure–high temperature (HPHT) conditions is proposed as a multifunctional tip for scanning tunneling microscopy (STM). Sequence of the procedures covering growing crystals with predetermined physical properties, selection of the synthesized crystals with the desired habit and their precise shaping have been developed. The original STM’s peculiarity is the electromagnetic probe-to-surface load measuring system. The results of fabrication and characterization of nanostructures for nanoelectronics, data storages and biology are demonstrated and discussed.


1998 ◽  
Vol 4 (S2) ◽  
pp. 600-601
Author(s):  
John Rakovan ◽  
F. Hochella Michael

Since its invention inl982 scanning probe microscopy (SPM) has become an important analytical tool in every branch of physical science. The two most widely used types of SPM are atomic force Microscopy (AFM) and scanning tunneling microscopy (STM). Both AFM and STM allow measurement of the microtopography of a surface down to the atomic scale. Many spin-off applications such as lateral force and magnetic force allow measurement of a variety of the physical properties of a surface while imaging its microtopography. SPM can be done in both air and liquid and hence can be used to observe the interactions that take place at a solid-solution interface.SPM has been used in mineralogy and geochemistry since 1989. Here as in other applications the great strength of SPM is in the characterization of the heterogeneous nature of mineral surfaces and the ability to observe many geochemical processes in real time.


Sign in / Sign up

Export Citation Format

Share Document