scholarly journals Bioactive Components, Volatile Profile and In Vitro Antioxidative Properties of Taxus baccata L. Red Arils

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4474
Author(s):  
Małgorzata Tabaszewska ◽  
Agata Antoniewska ◽  
Jaroslawa Rutkowska ◽  
Łukasz Skoczylas ◽  
Jacek Słupski ◽  
...  

This study aimed at assessing the composition of bioactive compounds, including ascorbic acid, carotenoids and polyphenols, the volatile compound profile and the antioxidant activity of red arils (RAs) of Taxus baccata L. grown in diverse locations in Poland. Among the carotenoids assayed in high quantities (3.3–5.42 μg/g), the lycopene content (2.55–4.1 μg/g) was remarkably higher than that in many cultivated fruits. Samples collected from three sites were distinguished by higher amounts of ascorbic acid (125 mg/100 g, on average) than those found in many cultivated berries. Phenylpropanoids quantitatively dominated among the four groups of phenolic compounds. Chromatographic separation enabled the detection of two phenylpropanoid acids: ferulic and p-coumaric. Irrespectively of the growth site, RAs contained substantial amounts of (-)-epicatechin (1080 μg/100 g, on average). A higher ability to scavenge DPPH● and ABTS●+ radicals was found in the hydrophilic fraction of RAs from two sites (Warsaw and Koszalin) compared with the other two sites. The volatile compound profile of RAs was dominated by alcohols, followed by ketones, esters and aldehydes. The presence of some volatiles was exclusively related to the specific growth site, which may be regarded as a valuable indicator. The combination of bioactive and volatile compounds and the fairly good antioxidant potential of RAs render them an attractive source for preparing functional foods.

2020 ◽  
Vol 16 (7) ◽  
pp. 1108-1115
Author(s):  
Bob-Chile A. Adaeze ◽  
Peter U. Amadi

Background: The assessment of underexploited leaves has become crucial to supplement the rapidly depleting sources of bioactive components as well as provide available nutrient sources for local inhabitants. Methods: This study thus investigated the bioactive components of the oil, and fatty acid composition, free radical scavenging potentials, and protein qualities of leaves of Z. mays and G. celosioides using standard methods. The bioactive components of the oils and fatty acids were determined by Gas Chromatograpy, while the amino acid and in-vitro antioxidant potentials were determined using a Technicon Sequential Multi-Sample (TSM) Amino Acid Analyzer, and spectrophotometer, respectively. Results: The Z. Mays leaves showed the abundance of farnesene, hexadecanoic acids, and caryophellene while G. celosioides produced high level of octadecadienoic acid, hexadecanoic acid, and phytol. Z. mays and G. celosioides contained 72.48% and 60.55% unsaturated fatty acids respectively, with the abundance of linolenic acid for Z. mays and oleic acid for G. celosioides. The result for the in vitro antioxidant % inhibition showed a concentration dependent free radical scavenging potentials of the leaves. Both G. celosioides and Z. mays produced greater 1,1-diphenyl-2- picrylhydrazyl (DPPH), and hydrogen peroxide radical scavenging potentials than ascorbic acid, while at 40ppm the nitric oxide and 2,2- azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical % inhibition of Z. mays leaves were lower than those for ascorbic acid. Discussion: The number of essential amino acids in both plants were 48.20 and 39.25 g/100g, total branched chain amino acids (TBCAA) were 21.15 and 16.92 g/100g, predicted protein efficiency ratios (P-PERs) were in the range of 3.02-3.23 and 2.68-2.77, and the essential amino acid index (EAAI) were 1.52 and 1.48, for Z. mays and G. celosioides leaves respectively. Conclusion: From these results, the utilization of Z. mays and G. celosioides for high quality protein, unsaturated fatty acids and potent antioxidant sources, should be massively encouraged.


Author(s):  
CARLOS ALEXANDRE KOGUISHI DE BRITO ◽  
PRISCILA BECKER SIQUEIRA ◽  
JANE CRISTINA DE SOUZA ◽  
HELENA MARIA ANDRÉ BOLINI

capacity in vitro of three different brands of guava nectars and juices, through free radicals scavenging methods, 1,1-diphenyl-2-picrylhydrazine (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS.+), and its correlation with the total polyphenolic content, total lycopene and ascorbic acid. Brands revealed statistical differences (p£ 0.05) in antioxidant capacity, ranging from 1.9 to 7.7 molTE/mL. Antioxidant capacity presented positive correlation for ascorbic acid content and polyphenolic compounds, being relatively low for the lycopene. Different process can influence the content of these compounds as well as interfere in their antioxidant capacity. The control of the production process is important to add value to guava products and fulfill the new tendency of the market.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2634
Author(s):  
Karol Jerzy Jędrejko ◽  
Jan Lazur ◽  
Bożena Muszyńska

Cordyceps spp. mushrooms have a long tradition of use as a natural raw material in Asian ethnomedicine because of their adaptogenic, tonic effects and their ability to reduce fatigue and stimulate the immune system in humans. This review aims to present the chemical composition and medicinal properties of Cordyceps militaris fruiting bodies and mycelium, as well as mycelium from in vitro cultures. The analytical results of the composition of C. militaris grown in culture media show the bioactive components such as cordycepin, polysaccharides, γ-aminobutyric acid (GABA), ergothioneine and others described in the review. To summarize, based on the presence of several bioactive compounds that contribute to biological activity, C. militaris mushrooms definitely deserve to be considered as functional foods and also have great potential for medicinal use. Recent scientific reports indicate the potential of cordycepin in antiviral activity, particularly against COVID-19.


Diabetes ◽  
1989 ◽  
Vol 38 (8) ◽  
pp. 1036-1041 ◽  
Author(s):  
J. A. Vinson ◽  
M. E. Staretz ◽  
P. Bose ◽  
H. M. Kassm ◽  
B. S. Basalyga
Keyword(s):  

2020 ◽  
Vol 51 (4) ◽  
pp. 1038-1047
Author(s):  
Mawia & et al.

This study had as principal objective identification of osmotic-tolerant potato genotypes by using "in vitro" tissue culture and sorbitol as a stimulating agent, to induce water stress, which was added to the  culture nutritive medium in different concentration (0,50, 110, 220, 330 and 440 mM).  The starting point was represented by plantlets culture collection, belonging to eleven potato genotypes: Barcelona, Nectar, Alison, Jelly, Malice, Nazca, Toronto, Farida, Fabulla, Colomba and Spunta. Plantlets were multiplied between two internodes to obtain microcuttings (in sterile condition), which were inoculated on medium. Sorbitol-induced osmotic stress caused a significant reduction in the ascorbic acid, while the concentration of proline, H2O2 and solutes leakage increased compared with the control. Increased the proline content prevented lipid peroxidation, which played a pivotal role in the maintenance of membrane integrity under osmotic stress conditions. The extent of the cytoplasmic membrane damage depends on osmotic stress severity and the genotypic variation in the maintenance of membranes stability was highly associated with the ability of producing more amounts of osmoprotectants (proline) and the non-enzymic antioxidant ascorbic acid in response to osmotic stress level. The results showed that the genotypes Jelly, Nectar, Allison, Toronto, and Colomba are classified as highly osmotic stress tolerant genotypes, while the genotypes Nazca and Farida are classified as osmotic stress susceptible ones.


1986 ◽  
Vol 41 (3) ◽  
pp. 355-358 ◽  
Author(s):  
V. S. Ghole ◽  
P. S. Damle ◽  
W. H.-P. Thiemann

A homogeneous magnetic field of 1.1 T strength exhibits a significant influence on the activity of the enzyme ascorbic acid oxidase in vitro. A Lineweaver-Burk plot of the reaction shows the typical pattern of a mixed-type inhibition, i.e. a larger rate of reaction at low substrate concentrations and a smaller rate of reaction at high substrate concentration than that of the control without magnetic field applied.


2021 ◽  
pp. 232020682110107
Author(s):  
Sandeep S. Katti ◽  
Kishore Bhat ◽  
Chetana Bogar

Aim: The aim of the current study was to isolate stem cells from various dental sources such as dental pulp, periodontal ligament (PDL), and apical papilla, and to characterize stem cells by staining for the presence/absence of specific surface markers and also to differentiate stem cells into osteogenic, chondrogenic, and adipogenic cell lineages by exposing them to specific growth factors under the ideal conditions. Materials and Methods: A total of 117 samples were included in the study, consisting of 30 pulp, 50 gingival, 35 PDL, and 2 apical papilla samples. The pulp was extirpated and transported to the Central Research Laboratory. Gingival connective tissue was collected from the participants undergoing any crown lengthening procedure or any gingivectomy procedure from the Department of Periodontology. A similar procedure was also followed for apical papilla and PDL. Isolation was done followed by the identification of the cells by immunocytochemistry using different markers. Once the identity of cells was confirmed, these cells were treated with different culture media to attain 70% to 100% confluency. Then the medium was replaced with a conditioning medium containing specific growth factors for differentiation into osteogenic, chondrogenic, and adipogenic cell lineages. Result: In our study, the number of samples collected and processed was 117. The isolation rate of stem cells from the above-collected samples was 70%. Statistical analysis—no statistical analysis was done as there was no variability expected. Conclusion: Our study showed that stem cells could be isolated, differentiated, and characterized from different dental sources.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fangfang Tao ◽  
Yanrong Zhang ◽  
Zhiqian Zhang

Mitochondria are highly dynamic double-membrane organelles which play a well-recognized role in ATP production, calcium homeostasis, oxidation-reduction (redox) status, apoptotic cell death, and inflammation. Dysfunction of mitochondria has long been observed in a number of human diseases, including cancer. Targeting mitochondria metabolism in tumors as a cancer therapeutic strategy has attracted much attention for researchers in recent years due to the essential role of mitochondria in cancer cell growth, apoptosis, and progression. On the other hand, a series of studies have indicated that traditional medicinal herbs, including traditional Chinese medicines (TCM), exert their potential anticancer effects as an effective adjunct treatment for alleviating the systemic side effects of conventional cancer therapies, for reducing the risk of recurrence and cancer mortality and for improving the quality of patients’ life. An amazing feature of these structurally diverse bioactive components is that majority of them target mitochondria to provoke cancer cell-specific death program. The aim of this review is to summarize the in vitro and in vivo studies about the role of these herbs, especially their bioactive compounds in the modulation of the disturbed mitochondrial function for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document