scholarly journals New Scabimycins A-C Isolated from Streptomyces acidiscabies (Lu19992)

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5922
Author(s):  
Constanze Paulus ◽  
Josef Zapp ◽  
Andriy Luzhetskyy

Peptide natural products displaying a wide range of biological activities have become important drug candidates over the years. Microorganisms have been a powerful source of such bioactive peptides, and Streptomyces have yielded many novel natural products thus far. In an effort to uncover such new, meaningful compounds, the metabolome of Streptomyces acidiscabies was analyzed thoroughly. Three new compounds, scabimycins A–C (1–3), were discovered, and their chemical structures were elucidated by NMR spectroscopy. The relative and absolute configurations were determined using ROESY NMR experiments and advanced Marfey’s method.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 249
Author(s):  
Raquel G. Soengas ◽  
Humberto Rodríguez-Solla

The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.


2021 ◽  
Vol 75 (6) ◽  
pp. 543-547
Author(s):  
Florian Hubrich ◽  
Alessandro Lotti ◽  
Thomas A. Scott ◽  
Jörn Piel

Nature has evolved a remarkable array of biosynthetic enzymes that install diverse chemistries into natural products (NPs), bestowing them with a range of important biological properties that are of considerable therapeutic value. This is epitomized by the ribosomally synthesized and post-translationally modified peptides (RiPPs), a class of peptide natural products that undergo extensive post-translational modifications to produce structurally diverse bioactive peptides. In this review, we provide an overview of our research into the proteusin RiPP family, describing characterized members and the maturation enzymes responsible for their unique chemical structures and biological activities. The diverse enzymology identified in the first two proteusin pathways highlights the enormous potential of the RiPP class for new lead structures and novel pharmacophore-installing maturases as biocatalytic tools for drug discovery efforts.


2019 ◽  
Vol 16 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Aurelio Ortiz ◽  
Miriam Castro ◽  
Estibaliz Sansinenea

Background:3,4-dihydroisocoumarins are an important small group belonging to the class of naturally occurring lactones isolated from different bacterial strains, molds, lichens, and plants. The structures of these natural compounds show various types of substitution in their basic skeleton and this variability influences deeply their biological activities. These lactones are structural subunits of several natural products and serve as useful intermediates in the synthesis of different heterocyclic molecules, which exhibit a wide range of biological activities, such as anti-inflammatory, antiplasmodial, antifungal, antimicrobial, antiangiogenic and antitumoral activities, among others. Their syntheses have attracted attention of many researchers reporting many synthetic strategies to achieve 3,4-dihydroisocoumarins and other related structures. </P><P> Objective: In this context, the isolation of these natural compounds from different sources, their syntheses and biological activities are reviewed, adding the most recent advances and related developments.Conclusion:This review aims to encourage further work on the isolation and synthesis of this class of natural products. It would be beneficial for synthetic as well as the medicinal chemists to design selective, optimized dihydroisocoumarin derivatives as potential drug candidates, since dihydroisocoumarin scaffolds have significant utility in the development of therapeutically relevant and biologically active compounds.


2020 ◽  
Author(s):  
Rafael Popin ◽  
Danillo Alvarenga ◽  
Raquel Castelo-Branco ◽  
David Fewer ◽  
Kaarina Sivonen

Abstract Background Microbial natural products have unique chemical structures and diverse biological activities. Cyanobacteria commonly possess a wide range of biosynthetic gene clusters to produce natural products. Several studies have mapped the distribution of natural product biosynthetic gene clusters in cyanobacterial genomes. However, little attention has been paid to natural product biosynthesis in plasmids. Some genes encoding cyanobacterial natural product biosynthetic pathways are believed to be dispersed by plasmids through horizontal gene transfer. Thus, we examined complete cyanobacterial genomes to assess if plasmids are involved in the production and dissemination of natural products by cyanobacteria.Results The 185 analyzed genomes possessed 1 to 42 gene clusters and an average of 10. In total, 1816 biosynthetic gene clusters were found. Approximately 95% of these clusters were present in chromosomes. The remaining 5% were present in plasmids, from which homologs of the biosynthetic pathways for aeruginosin, anabaenopeptin, ambiguine, cryptophycin, hassallidin, geosmin, and microcystin were manually curated. The cryptophycin pathway was previously described as active while the other gene cluster include all genes for biosynthesis. Approximately 12% of the 424 analyzed cyanobacterial plasmids contained homologs of genes involved in conjugation. Large plasmids, previously named as “chromids”, were also observed to be widespread in cyanobacteria. Sixteen cryptic natural product biosynthetic gene clusters and geosmin biosynthetic gene clusters were located in those mobile plasmids.Conclusion Homologues of genes involved in the production of toxins, protease inhibitors, odorous compounds, antimicrobials, antitumorals, and other unidentified natural products are located in cyanobacterial plasmids. Some of these plasmids are predicted to be conjugative. The present study provides in silico evidence that plasmids are involved in the distribution of natural product biosynthetic pathways in cyanobacteria.


Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 84 ◽  
Author(s):  
Marcelino Gutiérrez ◽  
Ricardo Santamaría ◽  
José Félix Gómez-Reyes ◽  
Héctor M. Guzmán ◽  
Javier Ávila-Román ◽  
...  

Gorgonian octocorals are considered a prolific source of secondary metabolites with a wide range of biological activities, including anti-inflammatory activity. In particular, the genus Briareum is known for producing a wealth of diterpenes with complex chemical structures. The chemical study of the methanolic extract of Briareum asbestinum collected in Bocas del Toro, on the Caribbean side of Panama, led to the isolation of three new eunicellin-type diterpenes: briarellin T (1), asbestinin 27 (2), asbestinin 28 (3) and the previously described asbestinin 17 (4). The structures of the new compounds were determined by extensive NMR analyses and HRMS. Anti-inflammatory activity assays showed a significant reduction of the pro-inflammatory cytokines TNF-α, IL-6, IL-1β and IL-8 as well as a downregulation of COX-2 expression in LPS-stimulated THP-1 macrophages. These findings support the potential use of these marine compounds as therapeutic agents in the treatment of inflammatory diseases.


2018 ◽  
Vol 25 (5) ◽  
pp. 636-658 ◽  
Author(s):  
Jan Pokorny ◽  
Lucie Borkova ◽  
Milan Urban

Triterpenoids are natural compounds with a large variety of biological activities such as anticancer, antiviral, antibacterial, antifungal, antiparazitic, antiinflammatory and others. Despite their low toxicity and simple availability from the natural resources, their clinical use is still severely limited by their higher IC50 and worse pharmacological properties than in the currently used therapeutics. This fact encouraged a number of researchers to develop new terpenic derivatives more suitable for the potential clinical use. This review summarizes a new approach to improve both, the activity and ADME-Tox properties by connecting active terpenes to another modifying molecules using click reactions. Within the past few years, this synthetic approach was well explored yielding a lot of great improvements of the parent compounds along with some less successful attempts. A large quantity of the new compounds presented here are superior in both activity and ADME-Tox properties to their parents. This review should serve the researchers who need to promote their hit triterpenic structures towards their clinical use and it is intended as a guide for the chemical synthesis of better drug candidates.


Author(s):  
Zahra Hashemi ◽  
Mohammad Ali Ebrahimzadeh

Abstract: Inherited beta-thalassemia is a major disease caused by irregular production of hemoglobin through reducing beta-globin chains. It has been observed that increasing fetal hemoglobin (HbF) production improves symptoms in the patients. Therefore, an increase in the level of HbF has been an operative approach for treating patients with beta-thalassemia. This review represents compounds with biological activities and pharmacological properties that can promote the HBF level and therefore used in the β-thalassemia patients' therapy. Various natural products with different mechanisms of action can be helpful in this medication cure. Clinical trials were efficient in improving the signs of patients. Association of in vivo, and in vitro studies of HbF induction and γ-globin mRNA growth displays that in vitro experiments could be an indicator of the in vivo response. The current study shows that; (a) HbF inducers can be grouped in several classes based on their chemical structures and mechanism of actions; b) According to several clinical trials, well-known drugs such as hydroxyurea and decitabine are useful HbF inducers; (c) The cellular biosensor K562 carrying genes under the control of the human γ-globin and β-globin gene promoters were applied during the researches; d) New natural products and lead compounds were found based on various studies as HbF inducers.


2011 ◽  
Vol 6 (8) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Maria Carmela Bonito ◽  
Carla Cicala ◽  
Maria Carla Marcotullio ◽  
Francesco Maione ◽  
Nicola Mascolo

Diterpenoids are a class of compounds that derive from the condensation of four isoprene units that leads to a wide variety of complex chemical structures, including acyclic bi-, tri-and tetra-cyclic compounds; in Salvia species, only bi-, tri-and tetra-cyclic compounds have been found. This review covers a wide range of biological activities and mode of action of diterpenoids isolated from Salvia species that might raise some pharmacological and pharmaceutical interest. We have produced a synoptic table where the biological activities of the main active principles are summarized. Our analysis emphasizes that diterpenoids from Salvia species continue to be a plant defence system since their antimicrobic activity. Experimental studies show that most of diterpenoids considered have cytotoxic and / or antiproliferative activity. Some of them have also cardiovascular and central effects. In a less extended manner, diterpenoids from Salvia species show gastrointestinal, urinary, antinflammatory, antidiabetic, ipolipidemic and antiaggregating effects. In the last decade, several clinical trials have been developed in order to investigate the real value of Salvia extracts treatment; results obtained are promising and confer scientific basis in the use of medicinal plants from folk medicine.


Author(s):  
Kai-Liang Ma ◽  
Shi-Hui Dong ◽  
Hang-Ying Li ◽  
Wen-Jun Wei ◽  
Yong-Qiang Tu ◽  
...  

Abstract Three previously undescribed cytochalasins, named xylariasins A‒C (1‒3), together with six known ones (4‒9) were isolated from Xylaria sp. CFL5, an endophytic fungus of Cephalotaxus fortunei. The chemical structures of all new compounds were elucidated on the basis of extensive spectroscopic data analyses and electronic circular dichroism calculation, as well as optical rotation calculation. Biological activities of compounds 1, 4‒9 were evaluated, including cytotoxic, LAG3/MHC II binding inhibition and LAG3/FGL1 binding inhibition activities. Compounds 6 and 9 possessed cytotoxicity against AGS cells at 5 μM, with inhibition rates of 94% and 64%, respectively. In addition, all tested isolates, except compound 6, exhibited obvious inhibitory activity against the interaction of both LAG3/MHC II and LAG3/FGL1. Compounds 1, 5, 7, and 8 inhibited LAG3/MHC II with IC50 values ranging from 2.37 to 4.74 μM. Meanwhile, the IC50 values of compounds 1, 7, and 8 against LAG3/FGL1 were 11.78, 4.39, and 7.45 μM, respectively. Graphic Abstract


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 670 ◽  
Author(s):  
Xiaoju Dou ◽  
Bo Dong

Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials.


Sign in / Sign up

Export Citation Format

Share Document