scholarly journals Anti-Herpes Simplex 1 Activity of Simmondsia Chinensis (Jojoba) Wax

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6059
Author(s):  
Zipora Tietel ◽  
Sarit Melamed ◽  
Noy Eretz-Kdosha ◽  
Ami Guetta ◽  
Raanan Gvirtz ◽  
...  

Jojoba (Simmondsia chinensis (Link) Schneider) wax is used for various dermatological and pharmaceutical applications. Several reports have previously shown beneficial properties of Jojoba wax and extracts, including antimicrobial activity. The current research aimed to elucidate the impact of Jojoba wax on skin residential bacterial (Staphylococcus aureus and Staphylococcus epidermidis), fungal (Malassezia furfur), and virus infection (herpes simplex 1; HSV-1). First, the capacity of four commercial wax preparations to attenuate their growth was evaluated. The results suggest that the growth of Staphylococcus aureus, Staphylococcus epidermidis, and Malassezia furfur was unaffected by Jojoba in pharmacologically relevant concentrations. However, the wax significantly attenuated HSV-1 plaque formation. Next, a complete dose–response analysis of four different Jojoba varieties (Benzioni, Shiloah, Hatzerim, and Sheva) revealed a similar anti-viral effect with high potency (EC50 of 0.96 ± 0.4 µg/mL) that blocked HSV-1 plaque formation. The antiviral activity of the wax was also confirmed by real-time PCR, as well as viral protein expression by immunohistochemical staining. Chemical characterization of the fatty acid and fatty alcohol composition was performed, showing high similarity between the wax of the investigated varieties. Lastly, our results demonstrate that the observed effects are independent of simmondsin, repeatedly associated with the medicinal impact of Jojoba wax, and that Jojoba wax presence is required to gain protection against HSV-1 infection. Collectively, our results support the use of Jojoba wax against HSV-1 skin infections.

2020 ◽  
Author(s):  
Nydia De La Cruz ◽  
Dagmar Knebel-Mörsdorf

Herpes simplex virus 1 (HSV-1) can adopt a variety of pathways to accomplish cellular internalization. In human keratinocytes representing the natural target cell of HSV-1, both direct plasma membrane fusion and endocytic uptake have been found. The impact of either pathway in successful infection, however, remains to be fully understood. To address the role of each internalization mode, we performed infection studies at low temperature as a tool to interfere with endocytic pathways. Interestingly, successful HSV-1 entry in primary human keratinocytes and HaCaT cells was observed even at 7°C, although delayed compared to infection at 37°C. Moreover, ex vivo infection of murine epidermis demonstrated that virus entry at 7°C is not only accomplished in cultured cells but also in tissue. Control experiments with cholera toxin B confirmed a block of endocytic uptake at 7°C. In addition, uptake of dextran by macropinosomes and phagocytic uptake of latex beads was also inhibited at 7°C. Infection of nectin-1-deficient murine keratinocytes affirmed that the entry at 7°C was receptor-dependent. Strikingly, the lysosomotropic agent, ammonium chloride, strongly inhibited HSV-1 entry suggesting a role for endosomal acidification. Ultrastructural analyses in turn revealed free capsids in the cytoplasm as well as virus particles in vesicles after infection at 7°C supporting both plasma membrane fusion and endocytic internalization as already observed at 37°C. Overall, entry of HSV-1 at 7°C suggests that the virus can efficiently adopt nectin-1-dependent unconventional vesicle uptake mechanisms in keratinocytes strengthening the role of endocytic internalization for successful infection. IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) relies on multiple internalization pathways to initiate infection. Our focus is on the entry in human keratinocytes, the major in vivo target during primary and recurrent infection. While antivirals reduce the severity of clinical cases, there is no cure or vaccine against HSV. To develop strategies that interfere with virus penetration, we need to understand the various parameters and conditions that determine virus entry. Here, we addressed the impact of virus internalization via vesicles by blocking endocytic processes at low temperature. Intriguingly, we detected entry of HSV-1 even at 7°C which led to infection of primary keratinocytes and epidermal tissue. Moreover, electron microscopy of human keratinocytes at 7°C support that internalization is based on fusion of the viral envelope with the plasma membrane as well as vesicle membranes. These results provide novel insights into conditions that still allow endocytic internalization of HSV-1.


2021 ◽  
Vol 15 ◽  
Author(s):  
Francisca Acuña-Hinrichsen ◽  
Adriana Covarrubias-Pinto ◽  
Yuta Ishizuka ◽  
María Francisca Stolzenbach ◽  
Carolina Martin ◽  
...  

Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic virus. Primary infection of HSV-1 in facial epithelium leads to retrograde axonal transport to the central nervous system (CNS) where it establishes latency. Under stressful conditions, the virus reactivates, and new progeny are transported anterogradely to the primary site of infection. During the late stages of neuronal infection, axonal damage can occur, however, the impact of HSV-1 infection on the morphology and functional integrity of neuronal dendrites during the early stages of infection is unknown. We previously demonstrated that acute HSV-1 infection in neuronal cell lines selectively enhances Arc protein expression - a major regulator of long-term synaptic plasticity and memory consolidation, known for being a protein-interaction hub in the postsynaptic dendritic compartment. Thus, HSV-1 induced Arc expression may alter the functionality of infected neurons and negatively impact dendritic spine dynamics. In this study we demonstrated that HSV-1 infection induces structural disassembly and functional deregulation in cultured cortical neurons, an altered glutamate response, Arc accumulation within the somata, and decreased expression of spine scaffolding-like proteins such as PSD-95, Drebrin and CaMKIIβ. However, whether these alterations are specific to the HSV-1 infection mechanism or reflect a secondary neurodegenerative process remains to be determined.


2004 ◽  
Vol 78 (16) ◽  
pp. 8641-8653 ◽  
Author(s):  
Cristina Barreca ◽  
Peter O'Hare

ABSTRACT Herpes simplex virus (HSV) normally undergoes productive infection in culture, causing cell destruction and plaque formation. Here we characterize an unusual pattern of HSV type 1 (HSV-1) infection in MDBK cells which surprisingly results in suppression of replication, cell recovery, and maintenance of virus. Compared to Vero cells, MDBK cells supported a normal productive infection at a high multiplicity with complete cell destruction. At low multiplicity, HSV also showed an identical initial specific infectivity in the two cell types. Thereafter, the progression of infection was radically different. In contrast to the rapid plaque expansion and eventual destruction in Vero monolayers, in MDBK cells, after initial plaque formation, plaque size actually decreased and, with time, monolayers recovered. Using a green fluorescent protein (GFP)-VP16-expressing virus, we monitored infection in live individual plaques. After early stages of intense GFP-VP16 expression, expression regressed to a thin boundary at the edge of the plaques and was completely suppressed by 10 days. Cells lacking expression then began to grow into the plaque boundaries. Furthermore, following media replacement, individual cells expressing GFP-VP16 could be observed reinitiating infection. The results indicated the production of a potent inhibitory component during infection in MDBK cells, and we show the continued and prolonged presence of interferon in the medium, at times when there was no longer evidence of ongoing productive infection. We exploited the ability of V protein of simian virus 5 to degrade Stat1 and prevent interferon signaling. We established MDBK cells constitutively expressing the V protein with the resultant loss of Stat1. In comparison to the parental cells, infection in these cells now progressed at a rapid rate with expanding plaque formation. We believe the conclusions have significant implications for the study of HSV-1 and interferon signaling both in culture and in animal models.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 92
Author(s):  
Bernard Middleton ◽  
Susan Michelle Cosgrove

There is an immediate need for alternative anti-herpetic treatment options effective for both primary infections and reoccurring reactivations of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Alternatives currently approved for the purposes of clinical administration includes antivirals and a reduced set of nucleoside analogues. The present article tests a treatment based on a systemic understanding of how the herpes virus affects cell inhibition and breakdown, and targets different phases of the viral cycle, including the entry stage, reproductive cross mutation, and cell-to-cell infection. The treatment consisted of five immunotherapeutic core compounds (5CC), which were hypothesized to be capable of neutralizing human monoclonal antibodies. The tested 5CC were noted as being functional in the application of eliminating the DNA synthesis of herpes viral interferon (IFN) - induced cellular antiviral response. They were here found to neutralize antiviral reproduction by blocking cell-to-cell infection. The activity of the 5CC was tested on RC-37 in vitro using an assay plaque reduction and in vivo against HSV-1 and HSV-2. The 50% inhibitory concentration (IC50) of 5CC was 0.0009% for HSV-1 plaque formation and 0.0008% for HSV-2 plaque formation. Further tests were performed to evaluate the susceptibility of HSV-1 and HSV-2 to antiherpetic drugs in Vero cells after virus entry. There were high-level markers of the 5CC virucidal activity in viral suspension of HSV-1 and HSV-2. These concentrations of the 5CC are nontoxic and reduced plaque formation by 98.2% for HSV-1 and 93.0% for HSV-2. Virus HSV-1 and HSV-2 titers were reduced significantly by 5CC to the point of being negative, ranging 0.01–0.09 in 72%. The results concluded the 5CC as being an effective treatment option for the herpes simplex virus.


2014 ◽  
Vol 89 (1) ◽  
pp. 262-274 ◽  
Author(s):  
Philipp Petermann ◽  
Katharina Thier ◽  
Elena Rahn ◽  
Frazer J. Rixon ◽  
Wilhelm Bloch ◽  
...  

ABSTRACTSkin keratinocytes represent a primary entry site for herpes simplex virus 1 (HSV-1)in vivo. The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) act as efficient receptors for both serotypes of HSV and are sufficient for disease development mediated by HSV-2 in mice. How HSV-1 enters skin and whether both nectin-1 and HVEM are involved are not known. We addressed the impact of nectin-1 during entry of HSV-1 into murine epidermis and investigated the putative contribution of HVEM. Usingex vivoinfection of murine epidermis, we showed that HSV-1 entered the basal keratinocytes of the epidermis very efficiently. In nectin-1-deficient epidermis, entry was strongly reduced. Almost no entry was observed, however, in nectin-1-deficient keratinocytes grown in culture. This observation correlated with the presence of HVEM on the keratinocyte surface in epidermis and with the lack of HVEM expression in nectin-1-deficient primary keratinocytes. Our results suggest that nectin-1 is the primary receptor in epidermis, while HVEM has a more limited role. For primary murine keratinocytes, on which nectin-1 acts as a single receptor, electron microscopy suggested that HSV-1 can enter both by direct fusion with the plasma membrane and via endocytic vesicles. Thus, we concluded that nectin-1 directs internalization into keratinocytes via alternative pathways. In summary, HSV-1 entry into epidermis was shown to strongly depend on the presence of nectin-1, but the restricted presence of HVEM can potentially replace nectin-1 as a receptor, illustrating the flexibility employed by HSV-1 to efficiently invade tissuein vivo.IMPORTANCEHerpes simplex virus (HSV) can cause a range of diseases in humans, from uncomplicated mucocutaneous lesions to life-threatening infections. The skin is one target tissue of HSV, and the question of how the virus overcomes the protective skin barrier and penetrates into the tissue to reach its receptors is still open. Previous studies analyzing entry into cells grownin vitrorevealed nectin-1 and HVEM as HSV receptors. To explore the contributions of nectin-1 and HVEM to entry into a natural target tissue, we established anex vivoinfection model. Using nectin-1- or HVEM-deficient mice, we demonstrated the distinct involvement of nectin-1 and HVEM for HSV-1 entry into epidermis and characterized the internalization pathways. Such advances in understanding the involvement of receptors in tissue are essential preconditions for unraveling HSV invasion of skin, which in turn will allow the development of antiviral reagents.


2021 ◽  
Vol 14 (10) ◽  
pp. 1463-1472
Author(s):  
Tian-Lan Lin ◽  
◽  
Wei-Ting Zeng ◽  
Fang Duan ◽  
Yin-Hui Pei ◽  
...  

AIM: To investigate the effect of Staphylococcus aureus (S. aures) lysates (SALs) on herpes simplex virus type-I (HSV1) infection in human corneal epithelial (HCE) cells and in a mouse model of HSV1 keratitis. METHODS: HCE, Vero, HeLa, and BV2 cells were infected with HSV1 [HSV1 f strain, HSV1f; HSV-1-H129 with green fluorescent protein (GFP) knock-in, HSV1g]. Pre- or post-infection, SAL at various concentrations was added to the culture medium for 24h. GFP fluorescence in HSV1g or plaque formation by HSV1f were examined. The effects of heat-treated SAL, precooled acetone-precipitated SAL, and SAL subjected to ultrafiltration (100 kDa) were evaluated. The effects of other bacterial components and lysates on HSV1 infection were also tested, including lipoteichoic acid (LTA), peptidoglycan (PGN), staphylococcal protein A (SPA), and α-hemolysin from S. aureus (α-toxin) as well as lysates from a wild-type S. aureus strain, S. epidermidis, and Escherichia coli (W-SAL, SEL, and ECL, respectively). In addition, SAL eye drops were applied topically to BALB/c mice with HSV1 keratitis, followed by in vivo observations. RESULTS: The cytopathic effect, plaque formation (HSV1f), and GFP expression (HSV1g) in infected cells were inhibited by SAL in a dose-dependent manner. The active component of SAL (≥100 kDa) was heat-sensitive and retained activity after acetone precipitation. In HSV1g-infected cells, treatment with LTA-sa, α-toxin, PGN-sa, or SPA did not inhibit GFP expression. SAL, W-SAL, and SEL (but not ECL) decreased GFP expression. In mice with HSV1 keratitis, SAL reduced corneal lesions by 71%. CONCLUSION: The results of this study demonstrate that SAL can be used to inhibit HSV1 infection, particularly keratitis. Further studies are needed to determine the active components and mechanism underlying the effects of SAL.


2020 ◽  
Author(s):  
Francisca Acuña-Hinrichsen ◽  
Adriana Covarrubias-Pinto ◽  
Yuta Ishizuka ◽  
Maria Francisca Stolzenbach ◽  
Carolina Martin ◽  
...  

ABSTRACTHerpes simplex virus type 1 (HSV-1) is a widespread neurotropic virus. The primary infection in facial epithelium leads to retrograde axonal transport to the central nervous system (CNS) where it establishes latency. Under stressful conditions, the virus reactivates, and new progeny is transported anterogradely to the primary site of infection. In late stages of neuronal infection, axonal damage is known to occur. However, the impact of HSV-1 infection on morphology and functional integrity at earlier stages of infection in neuronal dendrites is unknown. Previously, we demonstrated that acute HSV-1 infection in neuronal cell lines selectively enhances the expression of Arc protein - a major regulator of long-term synaptic plasticity and memory consolidation, known for being a protein-interaction hub in the postsynaptic dendritic compartment. Thus, HSV-1 induced Arc may alter the functionality of the infected neurons having an impact on dendritic spine dynamics. In this study we demonstrated that HSV-1 infection causes structural disassembly and functional deregulation in cultured cortical neurons, through protein homeostasis alteration with intracellular accumulation of Arc, and decreased expression of spine scaffolding-like proteins such as PSD-95, Drebrin and CaMKIIβ. Our findings reveal progressive deleterious effects of HSV-1 infection on excitatory neuronal synapse function and dendritic morphology, supporting the thesis of the infectious origin of neurodegenerative processes.


2018 ◽  
Vol 5 (11) ◽  
Author(s):  
Marie-Laure Chaix ◽  
Isabelle Charreau ◽  
Claire Pintado ◽  
Constance Delaugerre ◽  
Nadia Mahjoub ◽  
...  

Abstract We evaluated the impact of on-demand oral tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) for pre-exposure prophylaxis (PrEP) on herpes simplex virus (HSV)-1/2 incidence among men who have sex with men (MSM) enrolled in the ANRS IPERGAY trial. Serum samples were tested at baseline and at the last visit for HSV-1/2 antibodies. Overall HSV-1 incidence was 11.7 per 100 person-years; 16.2 and 7.8 per 100 person-years in the TDF/FTC and placebo arm, respectively (P = .19). Overall HSV-2 incidence was 7.6 per 100 person-years; 8.1 and 7.0 per 100 person-years in the TDF/FTC and placebo arm, respectively (P = .75). On-demand oral PrEP with TDF/FTC failed to reduce HSV-1/2 incidence in this population.


2021 ◽  
Vol 70 (5) ◽  
Author(s):  
Adéla Diepoltová ◽  
Klára Konečná ◽  
Ondřej Janďourek ◽  
Petr Nachtigal

Introduction. Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) are the most common pathogens from the genus Staphylococcus causing biofilm-associated infections. Generally, biofilm-associated infections represent a clinical challenge. Bacteria in biofilms are difficult to eradicate due to their resistance and serve as a reservoir for recurring persistent infections. Gap Statement. A variety of protocols for in vitro drug activity testing against staphylococcal biofilms have been introduced. However, there are often fundamental differences. All these differences in methodical approaches can then be reflected in the form of discrepancies between results. Aim. In this study, we aimed to develop optimal conditions for staphylococcal biofilm formation on pegs. The impact of peg surface modification was also studied. Methodology. The impact of tryptic soy broth alone or supplemented with foetal bovine serum (FBS) or human plasma (HP), together with the impact of the inoculum density of bacterial suspensions and the shaking versus the static mode of cultivation, on total biofilm biomass production in SA and SE reference strains was studied. The surface of pegs was modified with FBS, HP, or poly-l-lysine (PLL). The impact on total biofilm biomass was evaluated using the crystal violet staining method and statistical data analysis. Results. Tryptic soy broth supplemented with HP together with the shaking mode led to crucial potentiation of biofilm formation on pegs in SA strains. The SE strain did not produce biofilm biomass under the same conditions on pegs. Preconditioning of peg surfaces with FBS and HP led to a statistically significant increase in biofilm biomass formation in the SE strain. Conclusion. Optimal cultivation conditions for robust staphylococcal biofilm formation in vitro might differ among different bacterial strains and methodical approaches. The shaking mode and supplementation of cultivation medium with HP was beneficial for biofilm formation on pegs for SA (ATCC 29213) and methicillin-resistant SA (ATCC 43300). Peg conditioning with HP and PLL had no impact on biofilm formation in either of these strains. Peg coating with FBS showed an adverse effect on the biofilm formation of these strains. By contrast, there was a statistically significant increase in biofilm biomass production on pegs coated with FBS and HP for SE (ATCC 35983).


2016 ◽  
Vol 90 (23) ◽  
pp. 10535-10544 ◽  
Author(s):  
Doina Atanasiu ◽  
Wan Ting Saw ◽  
Roselyn J. Eisenberg ◽  
Gary H. Cohen

ABSTRACTReceptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion.IMPORTANCECell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when using deregulated forms of gD1and gH2/gL2, the fusogenic potential of gB could only be increased in the absence of receptor, underlining the exquisite regulation that occurs in the presence of receptor. Our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion.


Sign in / Sign up

Export Citation Format

Share Document