scholarly journals Total Release of 21 Indicator Pharmaceuticals Listed by the Swedish Medical Products Agency from Wastewater Treatment Plants to Surface Water Bodies in the 1.3 Million Populated County Skåne (Scania), Sweden

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 77
Author(s):  
Erland Björklund ◽  
Ola Svahn

In 2017, the Swedish Environmental Protection Agency published a report on advanced wastewater treatment for the removal of pharmaceutical residues and stated that advanced treatment should be implemented where it will make the largest difference from an environmental perspective. However, the report also concluded that this need cannot be specified with existing data, but consideration must be made of local conditions. Two considerations are (1) the discharged amount of pharmaceutical into receiving water bodies and (2) the turnover of water in the recipient, where the highest risks are related to recipients with a low water turnover and low dilution. The current project comprised eight different WWTPs distributed throughout the entire County Skåne (Scania) in Sweden, with a population of ca. 1,300,000 persons. In total, 21 of 22 pharmaceuticals were analyzed according to the list proposed by the Swedish Medical Products Agency 2015. The results show that large amounts of pharmaceuticals are released from the WWTPs yearly to Scanian recipients. The total discharge of pharmaceuticals from the eight treatment plants adds up to 71 kg of these 21 substances alone, mainly comprising metoprolol, which is a drug that lowers blood pressure, and the analgesic drug diclofenac. Additionally, carbamazepine, losartan, naproxen and oxazepam were present in significant concentrations. These represented three illnesses that are very common: high blood pressure, inflammation/pain and depression/anxiety. The concentrations were generally in line with previous national Swedish screenings. It was estimated that, when one million cubic meters (1,000,000 m3) of wastewater is discharged, almost 4 kg of the 21 pharmaceuticals is released. The total volume wastewater release by the >90 WWTPs in Scania was estimated to 152,887,000 m3, which corresponded to 590 kg/year. The investigated 21 drugs cover only a small part of many hundred pharmaceuticals that are in use in Sweden. Thus, most likely, one or several tons of pharmaceuticals leak out to the Scanian recipients annually. The analysis of river samples shows that the dilution of wastewater is a key parameter in reducing concentrations. However, some locations have remarkably high concentrations, which occur when the volume wastewater is large in relation to the flow in the river. These kinds of regional results are of importance when selecting where advanced treatment should be prioritized in a first instance, as requested by the Swedish EPA.

1996 ◽  
Vol 33 (3) ◽  
pp. 119-130 ◽  
Author(s):  
Allen C. Chao ◽  
Sergio J. de Luca ◽  
Carlos N. Idle

Studies concerning the treatment, stabilization and final disposal of biosolids, one of the by-products of wastewater treatment, in environmental recovery, have been intensified by the sanitary and environmental effects of land disposal. The careful assessment of biosolid quality shows that, when appropriately managed, the environmental risks of their uses can be minimized by chemical stabilization, and biosolids could even be used as fertilizer and soil conditioner. A research study of biosolid stabilization was performed using lime as a standard process compared to potassium ferrate (VI). The chances of leaching and solubilization of metals were tested, simulating conditions for disposal in the environment. The sanitary effectiveness in terms of pathogens (bacteria, fungi and helminth eggs) were also evaluated. Experiments were performed on the lime and ferrate(VI) treatment of compounds such as ammonia, nitrate, soluble sulphides, and total sulphates, indicators of odouriferous offensive compounds which might occasionally prevent some uses of the solids, and the results are presented in this paper. Wastewater Treatment Plants emit offensive odours generated during the sewage treatment process, as well as during the treatment and the management of biosolids. This occurs in the drying beds and the spreading of biosolids on land, due to the high concentrations of sulphur compounds, nitrogen compounds, acids and organic compounds (aldehydes and ketones). The potassium ferrate(VI) utilized in the research is a powerful oxidizing agent throughout the pH scale, with the advantage of not generating by-products which will cause toxicity or mutagenicity (DE LUCA, 1981). The ion ferrate(VI) has greater oxidizing power than permanganate, e.g., it oxidizes reduced sulfur forms to sulphate, ammonia to nitrate, hypochlorite to chlorite and chlorite to chlorate(DE LUCA et al., 1992; CHAO et al., 1992). This paper shows that, as expected, the potassium ferrate (VI) treatment replaces several chemical products utilized for odour control of sludges, mainly aggressive odours caused by ammonia and sulphides, through the formation of precipitates with iron compounds. Ferrate (VI) has often been shown to destroy soluble sulphides, transforming them into sulphate. The generation of oxygen in the decomposition of ferrate(VI) increases its oxidizing power. Ferrate(VI) applied to sludges also has the double effect of transforming ammonia into nitrates, such that this product takes the place of sulphates, acting as an electron acceptor, thus preventing the development of further odours when biosolids are utilized.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1280 ◽  
Author(s):  
Ivan Pisa ◽  
Ignacio Santín ◽  
Jose Vicario ◽  
Antoni Morell ◽  
Ramon Vilanova

Wastewater treatment plants (WWTPs) form an industry whose main goal is to reduce water’s pollutant products, which are harmful to the environment at high concentrations. In addition, regulations are applied by administrations to limit pollutant concentrations in effluent. In this context, control strategies have been adopted by WWTPs to avoid violating these limits; however, some violations still occur. For that reason, this work proposes the deployment of an artificial neural network (ANN)-based soft sensor in which a Long-Short Term Memory (LSTM) network is used to generate predictions of nitrogen-derived components, specifically ammonium ( S N H ) and total nitrogen ( S N t o t ). S N t o t is a limiting nutrient and can therefore cause eutrophication, while nitrogen in the S N H form is toxic to aquatic life. These parameters are used by control strategies to allow actions to be taken in advance and only when violations are predicted. Since predictions complement control strategies, the evaluation of the ANN-based soft sensor was carried out using the Benchmark Simulation Model N.2. (BSM2) and three different control strategies (from low to high control complexity). Results show that our proposed method is able to predict nitrogen-derived products with good accuracy: the probability of detecting violations of BSM2’s limits is 86%–94%. Moreover, the prediction accuracy can be improved by calibrating the soft sensor; for example, perfect prediction of all future violations can be achieved at the expense of increasing the false positive rate.


2021 ◽  
pp. 118048
Author(s):  
Ilunga Kamika ◽  
Shohreh Azizi ◽  
Adolph A. Muleja ◽  
Ramganesh Selvarajan ◽  
Mohamed Azab El-Liethy ◽  
...  

Author(s):  
Jiří Šálek

The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.


Author(s):  
Donwichai Sinthuchai ◽  
Suwanna Kitpati Boontanon ◽  
Pitchaya Piyaviriyakul ◽  
Narin Boontanon ◽  
Ranjna Jindal ◽  
...  

Abstract Excessive and inappropriate use of antibiotics contributes to the spread of antibiotic resistance in the environment, especially in low- to middle-income countries. This study investigated the occurrence, relative abundance, and fate of eight antibiotics at each treatment stage in four domestic and four hospital wastewater treatment plants (dWWTPs and hWWTPs, respectively), as well as mass loadings into the receiving water environments in Bangkok, Thailand. Samples were prepared by solid-phase extraction and analyzed by high-performance liquid chromatography–tandem mass spectrometry. Antibiotic concentrations were higher in hWWTPs than dWWTPs; approximately 60 times for influents and 10 times for effluents. Ciprofloxacin concentration increased in most dWWTPs, especially in the aeration unit and return sludge, suggesting that it predominantly occurred in the solid phase. Sulfamethoxazole predominantly occurred in the dissolved form, which is more difficult to degrade, and exhibited high concentrations in effluent. Moreover, antibiotic pollutant loadings were approximately 30–3,530 times higher from dWWTPs than from hWWTPs due to higher daily discharges from the domestic sector. These plants are a major point source of antibiotic residue release to aquatic environments; thus, their efficiency should be improved by incorporating advanced treatment processes to ensure effective removal of antibiotics.


Author(s):  
V.Yu. Belousova ◽  
◽  
N.V. Kondakova ◽  
S.N. Reznikova ◽  
N.S. Serpokrilov ◽  
...  

The results of the study of gas emissions from blocked wastewater treatment plants are presented. During the experiment, high concentrations of sulfur dioxide were detected. The analysis of methods for reducing the concentration of pollutants in the air of the working area of the aeration station was carried out. It is proposed to use a biochemical purification using a biofilter with a load of bark and biohumus. A model of the installation was constructed. To determine the technological parameters of the biofilter considered different types of combinations (height, moisture, particle size) of the carrier biomass and supporting layer of gravel, the effective processing time of the gas mixture. A decrease in sulfur dioxide, hydrogen sulfide, and formaldehyde was found. Additional advantages of the applied biologically active filter material are given.


2015 ◽  
Vol 73 (1) ◽  
pp. 182-191 ◽  
Author(s):  
Donwichai Sinthuchai ◽  
Suwanna Kitpati Boontanon ◽  
Narin Boontanon ◽  
Chongrak Polprasert

This study aimed to investigate the antibiotic concentration at each stage of treatment and to evaluate the removal efficiency of antibiotics in different types of secondary and advanced treatment, as well as the effects of the location of their discharge points on the occurrence of antibiotics in surface water. Eight target antibiotics and four hospital wastewater treatment plants in Bangkok with different conventional and advanced treatment options were investigated. Antibiotics were extracted by solid phase extraction and analysed by high performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). The antibiotic with the highest concentration at influent was cefazolin at 13,166 ng/L, while the antibiotic with the highest concentration at effluent was sulfamethoxazole at 1,499 ng/L. The removal efficiency of antibiotics from lowest to highest was sulfamethoxazole, piperacillin, clarithromycin, metronidazole, dicloxacillin, ciprofloxacin, cefazolin, and cefalexin. The adopted conventional treatment systems could not completely remove all antibiotics from wastewater. However, using advanced treatments or disinfection units such as chlorination and UV could increase the antibiotic removal efficiency. Chlorination was more effective than UV, ciprofloxacin and sulfamethoxazole concentration fluctuated during the treatment process, and sulfamethoxazole was the most difficult to remove. Both these antibiotics should be studied further regarding their contamination in sludge and suitable treatment options for their removal.


2021 ◽  
Author(s):  
Khirbet López-Velázquez ◽  
Jorge L. Guzmán-Mar ◽  
Hugo A. Saldarriaga-Noreña ◽  
Mario A. Murillo-Tovar ◽  
Minerva Villanueva-Rodríguez

Abstract The potential ecological risk of five residual endocrine-disrupting compounds (EDCs) in four wastewater treatment plants (WWTPs) was studied. The wastewater samples were collected in WWTPs of the Metropolitan Area of Monterrey, Mexico (designed as Monterrey City hereinafter) and 17β-estradiol (E2), 17α-ethinylestradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) were studied by SPE/GC-MS method. Results showed that all EDCs are widely distributed in WWTPs, finding high concentrations of BPA (450 ng/L) and EE2 (407.5 ng/L) in influents, while EE2 and 4TOP were the most abundant in effluents at levels from 1.6–26.8 ng/L (EE2) and < LOQ – 5.0 ng/L (4TOP), which corroborate that the wastewater discharges represent critical sources of EDCs to the aquatic environments. The potential ecological risk of residual EDCs was evaluated through risk quotients (RQs), and results indicated that the effluents of the WWTPs represent a high risk to exposed aquatic species, mainly due to the effect of residual estrogens E2 and EE2 which were considered as the most hazardous compounds among the studied EDCs, with RQ values up to 49.1 and 1165.2, respectively.


Sign in / Sign up

Export Citation Format

Share Document