circadian clock proteins
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 2 ◽  
Author(s):  
Van N Huynh ◽  
Sheng Wang ◽  
Xiaosen Ouyang ◽  
Willayat Y Wani ◽  
Michelle S Johnson ◽  
...  

O-linked conjugation of ß-N-acetyl-glucosamine (O-GlcNAc) to serine and threonine residues is a post-translational modification process that senses nutrient availability and cellular stress and regulates diverse biological processes that are involved in neurodegenerative diseases and provide potential targets for therapeutics development. However, very little is known of the networks involved in the brain that are responsive to changes in the O-GlcNAc proteome. Pharmacological increase of protein O-GlcNAcylation by Thiamet G (TG) has been shown to decrease tau phosphorylation and neurotoxicity, and proposed as a therapy in Alzheimer’s disease (AD). However, acute TG exposure impairs learning and memory, and protein O-GlcNAcylation is increased in the aging rat brain and in Parkinson’s disease (PD) brains. To define the cortical O-GlcNAc proteome that responds to TG, we injected young adult mice with either saline or TG and performed mass spectrometry analysis for detection of O-GlcNAcylated peptides. This approach identified 506 unique peptides corresponding to 278 proteins that are O-GlcNAcylated. Of the 506 unique peptides, 85 peptides are elevated by > 1.5 fold in O-GlcNAcylation levels in response to TG. Using pathway analyses, we found TG-dependent enrichment of O-GlcNAcylated synaptic proteins, trafficking, Notch/Wnt signaling, HDAC signaling, and circadian clock proteins. Significant changes in the O-GlcNAcylation of DNAJC6/AUXI, and PICALM, proteins that are risk factors for PD and/or AD respectively, were detected. We compared our study with two key prior O-GlcNAc proteome studies using mouse cerebral tissue and human AD brains. Among those identified to be increased by TG, 15 are also identified to be increased in human AD brains compared to control, including those involved in cytoskeleton, autophagy, chromatin organization and mitochondrial dysfunction. These studies provide insights regarding neurodegenerative diseases therapeutic targets.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 967
Author(s):  
María I. Aroca-Siendones ◽  
Sara Moreno-SanJuan ◽  
Jose D. Puentes-Pardo ◽  
Michela Verbeni ◽  
Javier Arnedo ◽  
...  

Colorectal cancer (CRC) is one of the most common tumours in developed countries. Although its incidence and mortality rates have decreased, its prognosis has not changed, and a high percentage of patients with CRC develop relapse (metachronous metastasis, MM, or local recurrence, LR) during their disease. The identification of these patients is very important for their correct management, but the lack of prognostic markers makes it difficult. Given the connection between circadian disruption and cancer development and progression, we aimed to analyse the prognostic significance of core circadian proteins in CRC. We measured the expression of PER1-3, CRY1-2, BMAL1 and NR1D2 in a cohort of CRC patients by immunohistochemistry (IHC) and analysed their prognostic potential in this disease. A low expression of PER2 and BMAL1 was significantly associated with metastasis at the moment of disease diagnosis, whereas a high expression of CRY1 appeared as an independent prognostic factor of MM development. A high expression of NR1D2 appeared as an independent prognostic factor of LR development after disease diagnosis. Moreover, patients with a low expression of BMAL1 and a high expression of CRY1 showed lower OS and DFS at five years. Although these markers need to be validated in larger and different ethnic cohorts, the simplicity of IHC makes these proteins candidates for personalizing CRC treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ling-Chih Chen ◽  
Yung-Lin Hsieh ◽  
Grace Y. T. Tan ◽  
Tai-Yun Kuo ◽  
Yu-Chi Chou ◽  
...  

AbstractPosttranslational modification (PTM) of core circadian clock proteins, including Period2 (PER2), is required for proper circadian regulation. PER2 function is regulated by casein kinase 1 (CK1)-mediated phosphorylation and ubiquitination but little is known about other PER2 PTMs or their interaction with PER2 phosphorylation. We found that PER2 can be SUMOylated by both SUMO1 and SUMO2; however, SUMO1 versus SUMO2 conjugation had different effects on PER2 turnover and transcriptional suppressor function. SUMO2 conjugation facilitated PER2 interaction with β-TrCP leading to PER2 proteasomal degradation. In contrast, SUMO1 conjugation, mediated by E3 SUMO-protein ligase RanBP2, enhanced CK1-mediated PER2S662 phosphorylation, inhibited PER2 degradation and increased PER2 transcriptional suppressor function. PER2 K736 was critical for both SUMO1- and SUMO2-conjugation. A PER2K736R mutation was sufficient to alter PER2 protein oscillation and reduce PER2-mediated transcriptional suppression. Together, our data revealed that SUMO1 versus SUMO2 conjugation acts as a determinant of PER2 stability and function and thereby affects the circadian regulatory system and the expression of clock-controlled genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nina M. Scheurer ◽  
Yogeswari Rajarathinam ◽  
Stefan Timm ◽  
Christin Köbler ◽  
Joachim Kopka ◽  
...  

The putative circadian clock system of the facultative heterotrophic cyanobacterial strain Synechocystis sp. PCC 6803 comprises the following three Kai-based systems: a KaiABC-based potential oscillator that is linked to the SasA-RpaA two-component output pathway and two additional KaiBC systems without a cognate KaiA component. Mutants lacking the genes encoding the KaiAB1C1 components or the response regulator RpaA show reduced growth in light/dark cycles and do not show heterotrophic growth in the dark. In the present study, the effect of these mutations on central metabolism was analyzed by targeted and non-targeted metabolite profiling. The strongest metabolic changes were observed in the dark in ΔrpaA and, to a lesser extent, in the ΔkaiAB1C1 mutant. These observations included the overaccumulation of 2-phosphoglycolate, which correlated with the overaccumulation of the RbcL subunit in the mutants, and taken together, these data suggest enhanced RubisCO activity in the dark. The imbalanced carbon metabolism in the ΔrpaA mutant extended to the pyruvate family of amino acids, which showed increased accumulation in the dark. Hence, the deletion of the response regulator rpaA had a more pronounced effect on metabolism than the deletion of the kai genes. The larger impact of the rpaA mutation is in agreement with previous transcriptomic analyses and likely relates to a KaiAB1C1-independent function as a transcription factor. Collectively, our data demonstrate an important role of homologs of clock proteins in Synechocystis for balanced carbon and nitrogen metabolism during light-to-dark transitions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christian H. Gabriel ◽  
Marta del Olmo ◽  
Amin Zehtabian ◽  
Marten Jäger ◽  
Silke Reischl ◽  
...  

AbstractThe cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.


2021 ◽  
Vol 15 ◽  
Author(s):  
Atsushige Ashimori ◽  
Yasukazu Nakahata ◽  
Toshiya Sato ◽  
Yuichiro Fukamizu ◽  
Takaaki Matsui ◽  
...  

The circadian clock possesses robust systems to maintain the rhythm approximately 24 h, from cellular to organismal levels, whereas aging is known to be one of the risk factors linked to the alternation of circadian physiology and behavior. The amount of many metabolites in the cells/body is altered with the aging process, and the most prominent metabolite among them is the oxidized form of nicotinamide adenine dinucleotide (NAD+), which is associated with posttranslational modifications of acetylation and poly-ADP-ribosylation status of circadian clock proteins and decreases with aging. However, how low NAD+ condition in cells, which mimics aged or pathophysiological conditions, affects the circadian clock is largely unknown. Here, we show that low NAD+ in cultured cells promotes PER2 to be retained in the cytoplasm through the NAD+/SIRT1 axis, which leads to the attenuated amplitude of Bmal1 promoter-driven luciferase oscillation. We found that, among the core clock proteins, PER2 is mainly affected in its subcellular localization by NAD+ amount, and a higher cytoplasmic PER2 localization was observed under low NAD+ condition. We further found that NAD+-dependent deacetylase SIRT1 is the regulator of PER2 subcellular localization. Thus, we anticipate that the altered PER2 subcellular localization by low NAD+ is one of the complex changes that occurs in the aged circadian clock.


2021 ◽  
Author(s):  
Nina M. Scheurer ◽  
Yogeswari Rajarathinam ◽  
Stefan Timm ◽  
Christin Köbler ◽  
Joachim Kopka ◽  
...  

AbstractThe putative circadian clock system of the facultative heterotrophic cyanobacterial strain Synechocystis sp. PCC 6803 comprises the following three Kai-based systems: a KaiABC-based potential oscillator that is linked to the SasA-RpaA two-component output pathway and two additional KaiBC systems without a cognate KaiA component. Mutants lacking the genes encoding the KaiAB1C1 components or the response regulator RpaA show reduced growth in light/dark cycles and do not show heterotrophic growth in the dark. In the present study, the effect of these mutations on central metabolism was analyzed by targeted and nontargeted metabolite profiling. The strongest metabolic changes were observed in the dark in ΔrpaA and, to a lesser extent, in the ΔkaiAB1C1 mutant. These observations included the overaccumulation of 2-phosphoglycolate, which correlated with the overaccumulation of the RbcL subunit in the mutants, and taken together, these data suggest enhanced RubisCO activity in the dark. The imbalanced carbon metabolism in the ΔrpaA mutant extended to the pyruvate family of amino acids, which showed increased accumulation in the dark. Hence, the deletion of the response regulator rpaA had a more pronounced effect on metabolism than the deletion of the kai genes. The larger impact of the rpaA mutation is in agreement with previous transcriptomic analyses and likely relates to a KaiAB1C1-independent function as a transcription factor. Collectively, our data demonstrate an important role of homologs of clock proteins in Synechocystis for balanced carbon and nitrogen metabolism during light-to-dark transitions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gon Carmi ◽  
Somnath Tagore ◽  
Alessandro Gorohovski ◽  
Aviad Sivan ◽  
Dorith Raviv-Shay ◽  
...  

Abstract In contrast to fossorial and above-ground organisms, subterranean species have adapted to the extreme stresses of living underground. We analyzed the predicted protein–protein interactions (PPIs) of all gene products, including those of stress-response genes, among nine subterranean, ten fossorial, and 13 aboveground species. We considered 10,314 unique orthologous protein families and constructed 5,879,879 PPIs in all organisms using ChiPPI. We found strong association between PPI network modulation and adaptation to specific habitats, noting that mutations in genes and changes in protein sequences were not linked directly with niche adaptation in the organisms sampled. Thus, orthologous hypoxia, heat-shock, and circadian clock proteins were found to cluster according to habitat, based on PPIs rather than on sequence similarities. Curiously, "ordered" domains were preserved in aboveground species, while "disordered" domains were conserved in subterranean organisms, and confirmed for proteins in DistProt database. Furthermore, proteins with disordered regions were found to adopt significantly less optimal codon usage in subterranean species than in fossorial and above-ground species. These findings reveal design principles of protein networks by means of alterations in protein domains, thus providing insight into deep mechanisms of evolutionary adaptation, generally, and particularly of species to underground living and other confined habitats.


2020 ◽  
Vol 9 (5) ◽  
pp. 1599 ◽  
Author(s):  
Agata Gabryelska ◽  
Marcin Sochal ◽  
Szymon Turkiewicz ◽  
Piotr Białasiewicz

Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia and associated with the disruption of circadian rhythm. The study aimed to assess the relationship between hypoxia-inducible factor (HIF) subunits, circadian clock proteins, and polysomnography (PSG) variables, in healthy individuals and severe OSA patients. The study included 20 individuals, who underwent PSG and were divided into severe OSA group (n = 10; AHI ≥ 30) and healthy control (n = 10; AHI < 5) based on apnea-hypopnea index (AHI). All participants had their peripheral blood collected in the evening before and the morning after the PSG. HIF-1α, HIF-1β, BMAL1, CLOCK, CRY1, and PER1 protein concertation measurements were performed using ELISA. In a multivariate general linear model with the concentration of all circadian clock proteins as dependent variables, evening HIF-1α protein level was the only significant covariant (p = 0.025). Corrected models were significant for morning and evening PER1 (p = 0.008 and p = 0.006, respectively), evening (p = 0.043), and evening BMAL protein level (p = 0.046). In corrected models, evening HIF-1α protein level had an influence only on the evening PER1 protein level. Results suggest that OSA patients are at risk for developing circadian clock disruption. This process might be mediated by subunit α of HIF-1, as its increased protein level is associated with overexpression of circadian clock proteins.


Sign in / Sign up

Export Citation Format

Share Document