scholarly journals Ex Vivo Permeation of Carprofen Vehiculated by PLGA Nanoparticles through Porcine Mucous Membranes and Ophthalmic Tissues

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 355 ◽  
Author(s):  
Lídia Gómez-Segura ◽  
Alexander Parra ◽  
Ana Cristina Calpena-Campmany ◽  
Álvaro Gimeno ◽  
Immaculada Gómez de Aranda ◽  
...  

(1) Background: Carprofen (CP), 2-(6-chlorocarbazole) propionic acid, is used as an anti-inflammatory, analgesic and anti-pyretic agent and it belongs to the family of non-steroidal anti-inflammatory drugs (NSAIDs). CP has some adverse reactions in systemic administration; for this reason, topical administration with CP nanoparticles (CP-NPs) can be an optimal alternative. The main objective of this work is the investigation of ex vivo permeation of CP through different types of porcine mucous membranes (buccal, sublingual and vaginal) and ophthalmic tissues (cornea, sclera and conjunctiva) to compare the influence of CP-NPs formulation over a CP solution (CP-Solution). (2) Methods: The ex vivo permeation profiles were evaluated using Franz diffusion cells. Furthermore, in vivo studies were performed to verify that the formulations did not affect the cell structure and to establish the amount retained (Qr) in the tissues. (3) Results: Permeation of CP-NPs is more effective in terms of drug retention in almost all tissues (with the exception of sclera and sublingual). In vivo studies show that neither of the two formulations affects tissue structure, so both formulations are safe. (4) Conclusions: It was concluded that CP-NPs may be a useful tool for the topical treatment of local inflammation in veterinary and human medicine.

2020 ◽  
Vol 10 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Sheetu Wadhwa ◽  
Ashana Puri

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at target site, which requires frequent administration and poor patient compliance. Objective: The aim of current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for treatment of inflammatory skin disorders. Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test). Results: The particle size analyses revealed average diameter and polydispersity index of selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion i.e. 21.90 ± 1.92 μg/cm2 which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®. Conclusion: Research suggests efficacy of the developed MTZ loaded microemulsion in treatment of chronic skin inflammatory disorders.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 46
Author(s):  
Khaled M. Hosny ◽  
Khalid S. Al Nahyah ◽  
Nabil A. Alhakamy

Acne vulgaris is a common skin disease that affects everybody at least once in their lives. The treatment is challenging because the stratum corneum contains rigid corneocytes surrounded by intercellular lamellae that are difficult to bypass. In the present study, we intended to formulate an effective nanoemulsion that could deliver isotretinoin (ITT) with enhanced solubility, permeability, and bioavailability across the skin. ITT can have a serious hepatotoxic effect if given too frequently or erratically. Therefore, to overcome the aforesaid limitation, quercetin (QRS), a hepatoprotective agent, was incorporated into the formulation. Initially, the ITT solubility was determined in various surfactants and cosurfactants to select the essential ingredients to be used in the formulation and to optimize a nanoemulsion that could enhance the solubility and permeability of ITT and its antimicrobial activity against Staphyloccocus aureus, which is the main microorganism responsible for acne vulgaris. The mixture design was applied to study the interactions and optimize the independent variables that could match the prerequisites of selected dependent responses. A formulation containing 0.25 g of rosehip oil, 0.45 g of surfactant (Lauroglycol-90), and 0.3 g of cosurfactant (propylene glycol) was chosen as an optimized desirable formulation. The optimized batch was loaded with QRS and evaluated for in vitro and ex vivo permeation. The in vivo hepatotoxicity was assessed through topical administration. Permeability studies confirmed the enhanced permeation percentage of ITT (52.11 ± 2.85%) and QRS (25.44 ± 3.18%) of the optimized formulation, with an enhanced steady-state flux (Jss). The in vivo studies conducted on experimental animals demonstrated superior hepatoprotective activity of the prepared optimized formulation compared with other formulations of drugs and commercially marketed products. We anticipate that this optimized ITT formulation, followed up with good clinical evaluations, can be a breakthrough in the safe treatment of acne vulgaris.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1409
Author(s):  
Haidara Majid ◽  
Andreas Puzik ◽  
Tanja Maier ◽  
Raphaela Merk ◽  
Anke Bartel ◽  
...  

Suitable ex vivo models are required as predictive tools of oromucosal permeability between in vitro characterizations and in vivo studies in order to support the development of novel intraoral formulations. To counter a lack of clinical relevance and observed method heterogenicity, a standardized, controlled and physiologically relevant ex vivo permeation model was established. This model combined the Kerski diffusion cell, process automation, novel assays for tissue integrity and viability, and sensitive LC-MS/MS analysis. The study aimed to assess the effectiveness of the permeation model in the sublingual formulation development of cyclobenzaprine, a promising agent for the treatment of psychological disorders. A 4.68-fold enhancement was achieved through permeation model-led focused formulation development. Here, findings from the preformulation with regard to pH and microenvironment-modulating excipients proved supportive. Moreover, monitoring of drug metabolism during transmucosal permeation was incorporated into the model. In addition, it was feasible to assess the impact of dosage form alterations under stress conditions, with the detection of a 33.85% lower permeation due to salt disproportionation. Integrating the coherent processes of disintegration, dissolution, permeation, and metabolization within a physiological study design, the model enabled successful formulation development for cyclobenzaprine sublingual tablets and targeted development of patient-oriented drugs for the oral cavity.


2020 ◽  
Vol 7 (4) ◽  
pp. 152
Author(s):  
Lidia Gómez-Segura ◽  
Alexander Parra ◽  
Ana C. Calpena ◽  
Álvaro Gimeno ◽  
Antonio Boix-Montañes

Carprofen (CP), a non-steroidal anti-inflammatory drug (NSAID), is profusely used in veterinary medicine for its analgesic and anti-inflammatory activity. Some undesirable effects are associated with its systemic administration. Alternative local routes are especially useful to facilitate its administration in animals. The main aim of this paper is to validate the suitability of ex vivo permeation experiments of CP with porcine mucous membranes (buccal, sublingual and vaginal) and ophthalmic tissues (cornea, sclera and conjunctiva) intended to be representative of naïve in vivo conditions. Chromatographic analysis of CP in membrane-permeated samples and drug-retained have been validated following standard bioanalytical guidelines. Then, recovery levels of drugs in tissue samples were assessed with aqueous phosphate buffered saline (PBS) buffer to preserve the histological integrity. Finally, as a proof of concept, a series of CP permeation tests in vertical Franz diffusion cells has been performed to evaluate permeation flux and permeability constants in all tissues, followed by a histological study for critical evaluation. Furthermore, synthetic tissue retention-like samples were prepared to verify the value of this experimental study. Results show linear relationships with good determination coefficient (R2 > 0.998 and R2 > 0.999) in the range of 0.78 to 6.25 mg/mL and 3.125 mg/mL to 100 mg/mL, respectively. Low limits of quantification around 0.40 µg/mL were allowed to follow permeation levels until a minimum of 0.40% of the locally-applied dose. This method showed a good accuracy and precision with values lower than 2%. After the recovery technique, reproducible values below 30% were achieved in all tissues, suggesting it is a non-damaging method with low efficiency that requires the use of further solvents to enhance the extraction percentages. After permeation and histology tests, no relevant peak interferences were detected, and no cell or tissue damage was found in any tissue. In conclusion, results demonstrate the suitability of this test to quantify the distribution of CP with good histological tolerability.


2021 ◽  
Vol 11 (6) ◽  
pp. 14640-14660

Betamethasone valerate-loaded niosomes were formulated to improve drug anti-inflammatory efficacy and reduce its systemic side effects by providing prolonged and localized drug delivery into the skin. Niosomes were prepared by thin-film hydration using different molar ratios of surfactant, cholesterol, and charge inducers. Formulations were characterized for entrapment efficiency, morphology, size, and zeta potential. In-vitro release and stability studies were conducted on selected formulations. Two niosomal gels were evaluated for spreadability, pH, rheological behavior, ex-vivo skin permeation, and in-vivo anti-inflammatory efficacy. Formulations showed high encapsulation efficiency reaching 92.03±1.88%. Vesicles were spherical in shape, ranging from 123.1 to 782 nm, and had large negative values of zeta-potential. They showed a biphasic release pattern which was more sustained than free drug suspension. Niosomes demonstrated good physicochemical stability under refrigeration for up to 3 months. Niosomal gels exhibited good spreadability, suitable pH values, favorable rheological behavior, and higher skin permeation than the plain gel. In-vivo studies revealed that niosomal gels showed a better sustained anti-inflammatory effect than drug plain gel and the marketed product, which was confirmed by further histopathological examination of paw tissues. Niosomal gels are promising formulations for sustained local delivery of betamethasone valerate.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 720 ◽  
Author(s):  
Elena Sánchez-López ◽  
Gerard Esteruelas ◽  
Alba Ortiz ◽  
Marta Espina ◽  
Josefina Prat ◽  
...  

Ocular inflammation is one of the most prevalent diseases in ophthalmology, which can affect various parts of the eye or the surrounding tissues. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, are commonly used to treat ocular inflammation in the form of eye-drops. However, their bioavailability in ocular tissues is very low (less than 5%). Therefore, drug delivery systems such as biodegradable polymeric PLGA nanoparticles constitute a suitable alternative to topical eye administration, as they can improve ocular bioavailability and simultaneously reduce drug induced side effects. Moreover, their prolonged drug release can enhance patient treatment adherence as they require fewer administrations. Therefore, several formulations of PLGA based nanoparticles encapsulating dexibuprofen (active enantiomer of Ibuprofen) were prepared using the solvent displacement method employing different surfactants. The formulations have been characterized and their interactions with a customized lipid corneal membrane model were studied. Ex vivo permeation through ocular tissues and in vivo anti-inflammatory efficacy have also been studied.


1994 ◽  
Vol 72 (05) ◽  
pp. 659-662 ◽  
Author(s):  
S Bellucci ◽  
W Kedra ◽  
H Groussin ◽  
N Jaillet ◽  
P Molho-Sabatier ◽  
...  

SummaryA double-blind, placebo-controlled randomized study with BAY U3405, a specific thromboxane A2 (TX A2) receptor blocker, was performed in patients suffering from severe stade II limb arteriopathy. BAY U3405 or placebo was administered in 16 patients at 20 mg four times a day (from day 1 to day 3). Hemostatic studies were done before therapy, and on day 2 and day 3 under therapy. On day 3, BAY U3405 was shown to induce a highly statistically significant decrease of the velocity and the intensity of the aggregations mediated by arachidonic acid (56 ± 37% for the velocity, 58 ± 26% for the intensity) or by U46619 endoperoxide analogue (36 ± 35% for the velocity, 37 ± 27% for the intensity). Similar results were already observed on day 2. By contrast, such a decrease was not noticed with ADP mediated platelet aggregation. Furthermore, plasma levels of betathrombo-globulin and platelet factor 4 remained unchanged. Peripheral hemodynamic parameters were also studied. The peripheral blood flow was measured using a Doppler ultrasound; the pain free walking distance and the total walking ability distance were determined under standardized conditions on a treadmill. These last two parameters show a trend to improvement which nevertheless was not statistically significant. All together these results encourage further in vivo studies using BAY U3405 or related compounds on a long-term administration.


Author(s):  
Y Madhusudan Rao ◽  
Gayatri P ◽  
Ajitha M ◽  
P. Pavan Kumar ◽  
Kiran kumar

Present investigation comprises the study of ex-vivo skin flux and in-vivo pharmacokinetics of Thiocolchicoside (THC) from transdermal films. The films were fabricated by solvent casting technique employing combination of hydrophilic and hydrophobic polymers. A flux of 18.08 µg/cm2h and 13.37µg/cm2h was achieved for optimized formulations containing 1, 8-cineole and oleic acid respectively as permeation enhancers. The observed flux values were higher when compared to passive control (8.66 µg/cm2h). Highest skin permeation was observed when 1,8-cineole was used as chemical permeation enhancer and it considerably (2-2.5 fold) improved the THC transport across the rat skin. In vivo studies were performed in rabbits and samples were analysed by LC-MS-MS. The mean area under the curve (AUC) values of transdermal film showed about 2.35 times statistically significant (p<0.05) improvement in bioavailability when compared with the oral administration of THC solution. The developed transdermal therapeutic systems using chemical permeation enhancers were suitable for drugs like THC in effective management of muscular pain.    


2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


Sign in / Sign up

Export Citation Format

Share Document