scholarly journals Globular Flower-Like Reduced Graphene Oxide Design for Enhancing Thermally Conductive Properties of Silicone-Based Spherical Alumina Composites

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 544
Author(s):  
Weijie Liang ◽  
Tiehu Li ◽  
Xiaocong Zhou ◽  
Xin Ge ◽  
Xunjun Chen ◽  
...  

The enhancement of thermally conductive performances for lightweight thermal interface materials is a long-term effort. The superb micro-structures of the thermal conductivity enhancer have an important impact on increasing thermal conductivity and decreasing thermal resistance. Here, globular flower-like reduced graphene oxide (GFRGO) is designed by the self-assembly of reduced graphene oxide (RGO) sheets, under the assistance of a binder via the spray-assisted method for silicone-based spherical alumina (S-Al2O3) composites. When the total filler content is fixed at 84 wt%, silicone-based S-Al2O3 composites with 1 wt% of GFRGO exhibit a much more significant increase in thermal conductivity, reduction in thermal resistance and reinforcement in thermal management capability than that of without graphene. Meanwhile, GFRGO is obviously superior to that of their RGO counterparts. Compared with RGO sheets, GFRGO spheres which are well-distributed between the S-Al2O3 fillers and well-dispersed in the matrix can build three-dimensional and isotropic thermally conductive networks more effectively with S-Al2O3 in the matrix, and this minimizes the thermal boundary resistance among components, owning to its structural characteristics. As with RGO, the introduction of GFRGO is helpful when decreasing the density of silicone-based S-Al2O3 composites. These attractive results suggest that the strategy opens new opportunities for fabricating practical, high-performance and light-weight filler-type thermal interface materials.

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 938 ◽  
Author(s):  
Weijie Liang ◽  
Xin Ge ◽  
Jianfang Ge ◽  
Tiehu Li ◽  
Tingkai Zhao ◽  
...  

The thermally conductive properties of silicone thermal grease enhanced by hexagonal boron nitride (hBN) nanosheets as a filler are relevant to the field of lightweight polymer-based thermal interface materials. However, the enhancements are restricted by the amount of hBN nanosheets added, owing to a dramatic increase in the viscosity of silicone thermal grease. To this end, a rational structural design of the filler is needed to ensure the viable development of the composite material. Using reduced graphene oxide (RGO) as substrate, three-dimensional (3D) heterostructured reduced graphene oxide-hexagonal boron nitride (RGO-hBN)-stacking material was constructed by self-assembly of hBN nanosheets on the surface of RGO with the assistance of binder for silicone thermal grease. Compared with hBN nanosheets, 3D RGO-hBN more effectively improves the thermally conductive properties of silicone thermal grease, which is attributed to the introduction of graphene and its phonon-matching structural characteristics. RGO-hBN/silicone thermal grease with lower viscosity exhibits higher thermal conductivity, lower thermal resistance and better thermal management capability than those of hBN/silicone thermal grease at the same filler content. It is feasible to develop polymer-based thermal interface materials with good thermal transport performance for heat removal of modern electronics utilising graphene-supported hBN as the filler at low loading levels.


Author(s):  
Vadim Gektin ◽  
Sai Ankireddi ◽  
Jim Jones ◽  
Stan Pecavar ◽  
Paul Hundt

Thermal Interface Materials (TIMs) are used as thermally conducting media to carry away the heat dissipated by an energy source (e.g. active circuitry on a silicon die). Thermal properties of these interface materials, specified on vendor datasheets, are obtained under conditions that rarely, if at all, represent real life environment. As such, they do not accurately portray the material thermal performance during a field operation. Furthermore, a thermal engineer has no a priori knowledge of how large, in addition to the bulk thermal resistance, the interface contact resistances are, and, hence, how much each influences the cooling strategy. In view of these issues, there exists a need for these materials/interfaces to be characterized experimentally through a series of controlled tests before starting on a thermal design. In this study we present one such characterization for a candidate thermal interface material used in an electronic cooling application. In a controlled test environment, package junction-to-case, Rjc, resistance measurements were obtained for various bondline thicknesses (BLTs) of an interface material over a range of die sizes. These measurements were then curve-fitted to obtain numerical models for the measured thermal resistance for a given die size. Based on the BLT and the associated thermal resistance, the bulk thermal conductivity of the TIM and the interface contact resistance were determined, using the approach described in the paper. The results of this study permit sensitivity analyses of BLT and its effect on thermal performance for future applications, and provide the ability to extrapolate the results obtained for the given die size to a different die size. The suggested methodology presents a readily adaptable approach for the characterization of TIMs and interface/contact resistances in the industry.


2000 ◽  
Author(s):  
Amit Devpura ◽  
Patrick E. Phelan ◽  
Ravi S. Prasher

Abstract An important aspect in electronic packaging is the heat dissipation. Flip-chip technology is widely being used to increase the rate of heat transfer from the chip. A method to further enhance the thermal conductivity is by the use of a thermal interface material between the device and the heat sink attached to it in the flip-chip technology. Percolation theory holds a key to understanding the behavior of thermal interface materials. Percolation, used widely in electrical engineering, is a physical phenomenon in which the highly conducting particles distributed randomly in the matrix form at least one continuous chain connecting the opposite faces of the matrix. This phenomenon was simulated using the matrix method, to study the effect of different shapes and size of the filler particles. The different shapes considered were spherical, vertical or horizontal rods, and flakes in horizontal or vertical orientation. The effect of the size of these particles was also examined. The results indicate that the composites with particles having the largest side in the direction of heat flow will always have a better conductivity than the particles oriented normal to it. Also, from the results, we can choose the best filler size in the composite if we know the filler concentration we are aiming at.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1201 ◽  
Author(s):  
Le Lv ◽  
Wen Dai ◽  
Aijun Li ◽  
Cheng-Te Lin

With the increasing power density of electrical and electronic devices, there has been an urgent demand for the development of thermal interface materials (TIMs) with high through-plane thermal conductivity for handling the issue of thermal management. Graphene exhibited significant potential for the development of TIMs, due to its ultra-high intrinsic thermal conductivity. In this perspective, we introduce three state-of-the-art graphene-based TIMs, including dispersed graphene/polymers, graphene framework/polymers and inorganic graphene-based monoliths. The advantages and limitations of them were discussed from an application point of view. In addition, possible strategies and future research directions in the development of high-performance graphene-based TIMs are also discussed.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 530
Author(s):  
Mazlan Mohamed ◽  
Mohd Nazri Omar ◽  
Mohamad Shaiful Ashrul Ishak ◽  
Rozyanty Rahman ◽  
Zaiazmin Y.N ◽  
...  

Epoxy mixed with others filler for thermal interface material (TIM) had been well conducted and developed. There are problem occurs when previous material were used as matrix material likes epoxy that has non-uniform thickness of thermal interface material produce, time taken for solidification and others. Thermal pad or thermal interface material using graphene as main material to overcome the existing problem and at the same time to increase thermal conductivity and thermal contact resistance. Three types of composite graphene were used for thermal interface material in this research. The sample that contain 10 wt. %, 20 wt. % and 30 wt. % of graphene was used with different contain of graphene oxide (GO).  The thermal conductivity of thermal interface material is both measured and it was found that the increase of amount of graphene used will increase the thermal conductivity of thermal interface material. The highest thermal conductivity is 12.8 W/ (mK) with 30 w. % graphene. The comparison between the present thermal interface material and other thermal interface material show that this present graphene-epoxy is an excellent thermal interface material in increasing thermal conductivity.  


Sign in / Sign up

Export Citation Format

Share Document