scholarly journals Radiosensitization by Gold Nanoparticles: Impact of the Size, Dose Rate, and Photon Energy

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 952 ◽  
Author(s):  
Kirill V. Morozov ◽  
Maria A. Kolyvanova ◽  
Maria E. Kartseva ◽  
Elena M. Shishmakova ◽  
Olga V. Dement’eva ◽  
...  

Gold nanoparticles (GNPs) emerged as promising antitumor radiosensitizers. However, the complex dependence of GNPs radiosensitization on the irradiation conditions remains unclear. In the present study, we investigated the impacts of the dose rate and photon energy on damage of the pBR322 plasmid DNA exposed to X-rays in the presence of 12 nm, 15 nm, 21 nm, and 26 nm GNPs. The greatest radiosensitization was observed for 26 nm GNPs. The sensitizer enhancement ratio (SER) 2.74 ± 0.61 was observed at 200 kVp with 2.4 mg/mL GNPs. Reduction of X-ray tube voltage to 150 and 100 kVp led to a smaller effect. We demonstrate for the first time that the change of the dose rate differentially influences on radiosensitization by GNPs of various sizes. For 12 nm, an increase in the dose rate from 0.2 to 2.1 Gy/min led to a ~1.13-fold increase in radiosensitization. No differences in the effect of 15 nm GNPs was found within the 0.85–2.1 Gy/min range. For 21 nm and 26 nm GNPs, an enhanced radiosensitization was observed along with the decreased dose rate from 2.1 to 0.2 Gy/min. Thus, GNPs are an effective tool for increasing the efficacy of orthovoltage X-ray exposure. However, careful selection of irradiation conditions is a key prerequisite for optimal radiosensitization efficacy.

Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 169 ◽  
Author(s):  
Mahbubur Rahman ◽  
Pasan Hettiarachchi ◽  
Vernon Cooray ◽  
Joseph Dwyer ◽  
Vladimir Rakov ◽  
...  

We present observations of X-rays from laboratory sparks created in the air at atmospheric pressure by applying an impulse voltage with long (250 µs) rise-time. X-ray production in 35 and 46 cm gaps for three different electrode configurations was studied. The results demonstrate, for the first time, the production of X-rays in gaps subjected to switching impulses. The low rate of rise of the voltage in switching impulses does not significantly reduce the production of X-rays. Additionally, the timing of the X-ray occurrence suggests the possibility that the mechanism of X-ray production by sparks is related to the collision of streamers of opposite polarity.


1996 ◽  
Vol 11 (5) ◽  
pp. 1169-1178 ◽  
Author(s):  
Kentaro Suzuya ◽  
Michihiro Furusaka ◽  
Noboru Watanabe ◽  
Makoto Osawa ◽  
Kiyohito Okamura ◽  
...  

Mesoscopic structures of SiC fibers produced from polycarbosilane by different methods were studied by diffraction and small-angle scattering of neutrons and x-rays. Microvoids of a size of 4–10 Å in diameter have been observed for the first time by neutron scattering in a medium momentum transfer range (Q = 0.1–1.0 Å−1). The size and the volume fraction of β–SiC particles were determined for fibers prepared at different heat-treatment temperatures. The results show that wide-angle neutron scattering measurements are especially useful for the study of the mesoscopic structure of multicomponent materials.


2020 ◽  
Vol 10 (7) ◽  
pp. 2611
Author(s):  
Hirokatsu Yumoto ◽  
Yuichi Inubushi ◽  
Taito Osaka ◽  
Ichiro Inoue ◽  
Takahisa Koyama ◽  
...  

A nanofocusing optical system—referred to as 100 exa—for an X-ray free-electron laser (XFEL) was developed to generate an extremely high intensity of 100 EW/cm2 (1020 W/cm2) using total reflection mirrors. The system is based on Kirkpatrick-Baez geometry, with 250-mm-long elliptically figured mirrors optimized for the SPring-8 Angstrom Compact Free-Electron Laser (SACLA) XFEL facility. The nano-precision surface employed is coated with rhodium and offers a high reflectivity of 80%, with a photon energy of up to 12 keV, under total reflection conditions. Incident X-rays on the optics are reflected with a large spatial acceptance of over 900 μm. The focused beam is 210 nm × 120 nm (full width at half maximum) and was evaluated at a photon energy of 10 keV. The optics developed for 100 exa efficiently achieved an intensity of 1 × 1020 W/cm2 with a pulse duration of 7 fs and a pulse energy of 150 μJ (25% of the pulse energy generated at the light source). The experimental chamber, which can provide different stage arrangements and sample conditions, including vacuum environments and atmospheric-pressure helium, was set up with the focusing optics to meet the experimental requirements.


1987 ◽  
Vol 93 ◽  
pp. 485-485
Author(s):  
H. Steinle ◽  
W. Pietsck

AbstractDuring the August 1983 outburst of the old nova GK Persei observations with EXOSAT showed for the first time a 351 second periodicity in X-rays.Our fast photometry (U(B)V with 25 sec time resolution) was made at the end of the outburst in the nights of September 29 , and October 1–3 , using the 2.2 meter telescope at Calar Alto (Spain).Optical variations up to 10% in U and 4% in V with periodicities in the range 350 to 360 seconds were found, lasting only for few cycles.A comparison with the extrapolated prediction of the X-ray maxima did not show a coincidence, but rather an anticoincidence in several cases. This supports a model of reprocessed X-rays at the inner edge of an accretion disk.


2019 ◽  
Vol 486 (4) ◽  
pp. 4863-4879 ◽  
Author(s):  
Ali Takey ◽  
Florence Durret ◽  
Isabel Márquez ◽  
Amael Ellien ◽  
Mona Molham ◽  
...  

ABSTRACT We present X-ray and optical properties of the optically confirmed galaxy cluster sample from the 3XMM/SDSS Stripe 82 cluster survey. The sample includes 54 galaxy clusters in the redshift range of 0.05–1.2, with a median redshift of 0.36. We first present the X-ray temperature and luminosity measurements that are used to investigate the X-ray luminosity–temperature relation. The slope and intercept of the relation are consistent with those published in the literature. Then, we investigate the optical properties of the cluster galaxies including their morphological analysis and the galaxy luminosity functions (GLFs). The morphological content of cluster galaxies is investigated as a function of cluster mass and distance from the cluster centre. No strong variation of the fraction of early- and late-type galaxies with cluster mass is observed. The fraction of early-type galaxies as a function of cluster radius varies as expected. The individual GLFs of red sequence galaxies were studied in the five ugriz bands for 48 clusters. The GLFs were then stacked in three mass bins and two redshift bins. Twenty clusters of the present sample are studied for the first time in X-rays, and all are studied for the first time in the optical range. Altogether, our sample appears to have X-ray and optical properties typical of ‘average’ cluster properties.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Ka-Wah Wong ◽  
Rodrigo S. Nemmen ◽  
Jimmy A. Irwin ◽  
Dacheng Lin

The nearby M87 hosts an exceptional relativistic jet. It has been regularly monitored in radio to TeV bands, but little has been done in hard X-rays ≳10 keV. For the first time, we have successfully detected hard X-rays up to 40 keV from its X-ray core with joint Chandra and NuSTAR observations, providing important insights to the X-ray origins: from the unresolved jet or the accretion flow. We found that the hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain very-high-energy γ -ray emission above a GeV. We discuss recent models to understand these high energy emission processes.


2018 ◽  
Vol 25 (3) ◽  
pp. 878-884 ◽  
Author(s):  
Hyun-Joon Shin ◽  
Namdong Kim ◽  
Hee-Seob Kim ◽  
Wol-Woo Lee ◽  
Chae-Soon Lee ◽  
...  

A scanning transmission X-ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X-rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X-ray microscopy (STXM) setup is from ∼150 to ∼1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction-limited space resolution, ∼30 nm, is achieved in the photon energy range up to ∼850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X-ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ∼50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.


1994 ◽  
Vol 45 (7) ◽  
pp. 1329 ◽  
Author(s):  
W Pathipanawat ◽  
RAC Jones ◽  
K Sivasithamparam

An improved technique for successful artificial hybridization in annual medic (Medicago spp.) is described. Using a previously reported method, only four out of seven species were successfully crossed, with the percentage of success ranging from 3 to 22%. Initial modifications to this technique gave a 7-8 fold increase in the successful crossing rate in M. murex and M. polymorpha medic, from 9 to 64% with M. murex and from 10 to 82% with M. polymorpha. Further modifications to the technique resulted in a success rate of 100% in both species. The numbers of seeds per pod obtained from crosses in both species were also increased by using the modified techniques compared to the established method. Selection of larger, more mature flowers, differences in flower cutting position, as well as post pollination position were the main modifications which accounted for the greatly improved success rate. The modified technique was subsequently applied successfully to obtain for the first time inter-specific crosses involving M. polymorphax M. murex, M. polymorphax M. sphaerocarpos, M.murexx M. sphaerocarpos, M. solerolii x M. littoralis/M.truncatula hybrid, M. solerolii x M, tornata, and M. littoralis/M.truncatula hybrid x M. sphaerocarpos.


2018 ◽  
Vol 619 ◽  
pp. A16
Author(s):  
C. Vignali ◽  
P. Severgnini ◽  
E. Piconcelli ◽  
G. Lanzuisi ◽  
R. Gilli ◽  
...  

Context. The search for heavily obscured active galactic nuclei has been revitalized in the last five years by NuSTAR, which has provided a good census and spectral characterization of a population of such objects, mostly at low redshift, thanks to its enhanced sensitivity above 10 keV compared to previous X-ray facilities, and its hard X-ray imaging capabilities. Aims. We aim at demonstrating how NGC 2785, a local (z = 0.009) star-forming galaxy, is responsible, in virtue of its heavily obscured active nucleus, for significant contamination in the non-imaging BeppoSAX/PDS data of the relatively nearby (≈17′) quasar IRAS 09104+4109 (z = 0.44), which was originally mis-classified as Compton thick. Methods. We analyzed ≈71 ks NuSTAR data of NGC 2785 using the MYTorus model and provided a physical description of the X-ray properties of the source for the first time. Results. We found that NGC 2785 hosts a heavily obscured (NH ≈ 3 × 1024 cm−2) nucleus. The intrinsic X-ray luminosity of the source, once corrected for the measured obscuration (L2−10keV ≈ 1042 erg s−1), is consistent within a factor of a few with predictions based on the source mid-infrared flux using widely adopted correlations from the literature. Conclusions. Based on NuSTAR data and previous indications from the Neil Gehrels Swift Observatory (BAT instrument), we confirm that NGC 2785, because of its hard X-ray emission and spectral shape, was responsible for at least one third of the 20–100 keV emission observed using the PDS instrument onboard BeppoSAX, originally completely associated with IRAS 09104+4109. Such emission led to the erroneous classification of this source as a Compton-thick quasar, while it is now recognized as Compton thin.


2016 ◽  
Vol 23 (6) ◽  
pp. 1333-1347 ◽  
Author(s):  
John P. Sutter ◽  
Simon G. Alcock ◽  
Yogesh Kashyap ◽  
Ioana Nistea ◽  
Hongchang Wang ◽  
...  

Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors <5 nm r.m.s. introduce damagingly large striations into the reflected beam. To counteract such problems, surface modifications with alternating concave and convex curvature on equal segments were polished onto the surface of non-active mirrors of fixed curvature. Such optics are useful for providing a fixed size of X-ray beam, but do not provide the adaptability required by many experiments. In contrast, deformable piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory's freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos' influence on the mirror's figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature.


Sign in / Sign up

Export Citation Format

Share Document