scholarly journals Effect of Synthesis Temperature on the Size of ZnO Nanoparticles Derived from Pineapple Peel Extract and Antibacterial Activity of ZnO–Starch Nanocomposite Films

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1061 ◽  
Author(s):  
Hasbullah Hassan Basri ◽  
Rosnita A. Talib ◽  
Rashidah Sukor ◽  
Siti Hajar Othman ◽  
Hidayah Ariffin

This research investigated the effect of synthesis temperature on the size and shape of zinc oxide (ZnO) nanoparticles (NPs) synthesized using pineapple peel waste and antibacterial activity of ZnO NPs in starch films. Zinc oxide NPs synthesized at different temperatures were characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Micrographs of ZnO NPs synthesized at 28 and 60 °C showed that synthesis temperature affected the sizes and shapes of ZnO NPs. The non-heated (28 °C) condition resulted in NPs with diameters in the range of 8–45 nm with a mixture of spherical and rod shapes, whereas the heated (60 °C) condition led to NPs with diameters in the range of 73–123 nm with flower rod shapes. The ZnO–starch nanocomposite films incorporated with 1, 3, and 5 wt.% ZnO NPs were prepared via a film casting method. The antibacterial activity of the films against Gram-positive and Gram-negative bacteria was investigated using the disc diffusion method. The results showed an increase in the inhibition zone for Gram-positive bacteria, particularly Bacillus subtilis, when the concentration of ZnO NPs incorporated in the film was increased from 1 to 5 wt.%.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1743
Author(s):  
Majid Rasool Kamli ◽  
Maqsood Ahmad Malik ◽  
Vartika Srivastava ◽  
Jamal S. M. Sabir ◽  
Ehab Hussain Matter ◽  
...  

This study presents an inexpensive, eco-friendly, and simple green synthesis of ZnO nanoparticles using Origanum vulgare extract. These nanoparticles are non-hazardous, environmentally friendly, and cheaper than other methods of biosynthesis. Ongoing research determines the role of phytochemicals in the fabrication and biosynthesis of ZnO NPs and their role in antibacterial activity and biomedical applications. Characterizations by fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) determine the successful biosynthesis of ZnO NPs. Meanwhile, TEM and X-ray diffraction studies approximated the spherical morphology and crystalline nature of biosynthesized ZnO NPs of nano size in the range of 20–30 nm. The global increase in drug resistance necessitates the search for new drugs with different mechanisms of action. Quorum sensing (QS), a cell-to-cell communication, has gained attention as an emerging drug target. It controls numerous biochemical processes in bacteria, which are essential for their survival and pathogenicity. The potential of nanomedicines has also been tested to synthesize new antibiotics to tackle drug resistance. ZnO NPs were explored for their antibacterial, antiquorum sensing, and antibiofilm activities with a bioreporter strain of Chromobacterium violaceum. Susceptibility testing results indicated the potential antibacterial activity of ZnO NPs with a minimum inhibitory concentration (MIC) of 4 µg/mL and minimum bactericidal concentration (MBC) of 16 µg/mL. Antiquorum-sensing assays revealed that these nanoparticles inhibit quorum sensing with minimum antiquorum sensing activity (MQSIC) of 1 µg/mL, without causing any bacterial growth inhibition. In addition, ZnO NPs inhibit biofilm formation at inhibitory and higher concentrations. RT-qPCR results supported the downregulation of the quorum sensing genes when C. violaceum was treated with ZnO NPs. The outcomes of this study are promising with regard to the biofilm and quorum sensing, emphasizing the potential applications of ZnO NPs against bacterial communication and biofilm formation.


2021 ◽  
Author(s):  
Gajendran Pavithra ◽  
Santhakumar kannappan

Abstract The present paper describes the green synthesis of Zinc oxide nanoparticles (ZnO NPs) from the flowers of L. nepetifolia. The synthesis of ZnO nanoparticles and examined by using Ultraviolet-visible spectroscopy, Fourier Transform-Infrared spectroscopy, X-ray Diffraction analysis, Dynamic Light Scattering analysis, Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy, Transmission Electron Microscopy, and Thermogravimetric Analysis. The photocatalytic studies were followed using methylene blue (MB) dye by ZnO nanoparticles by using sunlight as a source. The degradation of MB dye is found to be 90 %. Then the synthesized ZnO nanoparticles help to evaluate the antioxidant activities. The antioxidant activities of ZnO nanoparticles were exhibiting through scavenging of Nitric oxide, Hydrogen peroxide, and DPPH free radicals. Furthermore, the electrochemical analysis of reduced Graphene Oxide-Zinc oxide (rGO-ZnO) nanocomposite shows that the prepared rGO-ZnO nanocomposite has a high specific capacitance of about 667 F g-1 in comparison with the pure Zinc oxide nanoparticles (200 F g-1) and has good cycling stability of around 1000 cycles. The synthesis of multifunctional ZnO nanoparticles by using natural plant products like seeds, leaves, flowers, etc may help to explore as environment-friendly which is opposite to chemical synthesis.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4241
Author(s):  
Enyioma C. Okpara ◽  
Omolola E. Fayemi ◽  
El-Sayed M. Sherif ◽  
Harri Junaedi ◽  
Eno E. Ebenso

Zinc Oxide (ZnO) nanoparticles were prepared using a simple green synthesis approach in an alkaline medium, from three different extracts of citrus peels waste. The synthesized nano-crystalline materials were characterized by using ultraviolet-visible spectroscopy (UV-vis), x-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive x-ray spectroscopy (EDS), environmental scanning electron microscopy (ESEM), and transmission electron microscopy (TEM). UV-vis analysis of the nanoparticles showed broad peaks around 360 nm for the ZnO NPs (Zinc oxide nanoparticles) from three citrus peels’ extracts. ZnO NPs exhibited Zn–O band close to 553 cm−1, which further verified the formation of the ZnO NPs. A bandgap of 3.26 eV, 3.20 eV and 3.30 eV was calculated for the ZnO NPs from grape (ZnO NPs/GPE), lemon (ZnO NPs/LPE), and orange (ZnO NPs/OPE) peels extract, respectively. The average grain sizes of the ZnO nanoparticles were evaluated to be 30.28 nm, 21.98 nm, and 18.49 nm for grape (ZnO NPs/GPE), lemon (ZnO NPs/LPE), and orange (ZnO NPs/OPE) peel extract, respectively. The surface morphology and sizes of the nanoparticle were confirmed by ESEM and TEM analysis, respectively. Furthermore, the zeta potential of the as-prepared ZnO NPs from OPE, LPE, and GPE was −34.2 mV, −38.8 mV, and −42.9 mV, respectively, indicating the high stability of the nanoparticles. Cyclic voltammetric properties of the synthesized nanoparticles were investigated across extracts, and the results showed that the citrus peels extracts (CPE) mediated ZnO NPs modified screen plate carbon (SPC/ ZnO NPs/CPE) electrodes exhibited enhanced catalytic properties when compared with the bare SPCE. The electroactive areas computed from the enhancement of the bare SPCE was approximately three times for SPCE/ ZnO NPs/LPE, and SPCE/ZnO NPs/GPE, and two times for SPCE/ZnO NPs/OPE, higher than that of the bare SPCE. Comparison across the extracts suggested that the catalytic properties of the nanoparticles were unique in ZnO NPs from GPE.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Meron Girma Demissie ◽  
Fedlu Kedir Sabir ◽  
Gemechu Deressa Edossa ◽  
Bedasa Abdisa Gonfa

The synthesis of metal oxide nanoparticles with the use of medicinal plant extract is a promising alternative to the conventional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from indigenous “Koseret” Lippia adoensis leaf extract which is an endemic medicinal plant and cultivated in home gardens of different regions of Ethiopia. The biosynthesized zinc oxide nanoparticles were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. Furthermore, this study also evaluated the antibacterial activity of the synthesized ZnO nanoparticles against clinical and standard strains of Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Enterococcus faecalis by the disc diffusion method. According to the result of this study, ZnO nanoparticles synthesized using Lippia adoensis leaf extract showed promising result against both Gram-positive and Gram-negative bacterial strains with a maximum inhibition zone of 14 mm and 12 mm, respectively, using uncalcinated form of the synthesized ZnO nanoparticles.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gebretinsae Yeabyo Nigussie ◽  
Gebrekidan Mebrahtu Tesfamariam ◽  
Berhanu Menasbo Tegegne ◽  
Yemane Araya Weldemichel ◽  
Tesfakiros Woldu Gebreab ◽  
...  

We report in this paper antibacterial activity of Ag-doped TiO2 and Ag-doped ZnO nanoparticles (NPs) under visible light irradiation synthesized by using a sol-gel method. Structural, morphological, and basic optical properties of these samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectrum, and UV-Vis reflectance. Room temperature X-ray diffraction analysis revealed that Ag-doped TiO2 has both rutile and anatase phases, but TiO2 NPs only have the anatase phase. In both ZnO and Ag-doped ZnO NPs, the hexagonal wurtzite structure was observed. The morphologies of TiO2 and ZnO were influenced by doping with Ag, as shown from the SEM images. EDX confirms that the samples are composed of Zn, Ti, Ag, and O elements. UV-Vis reflectance results show decreased band gap energy of Ag-doped TiO2 and Ag-doped ZnO NPs in comparison to that of TiO2 and ZnO. Pathogenic bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, were used to assess the antibacterial activity of the synthesized materials. The reduction in the viability of all the three bacteria to zero using Ag-doped ZnO occurred at 60 μg/mL of culture, while Ag-doped TiO2 showed zero viability at 80 μg/mL. Doping of Ag on ZnO and TiO2 plays a vital role in the increased antibacterial activity performance.


2019 ◽  
Vol 11 (2) ◽  
pp. 119 ◽  
Author(s):  
Aisha Shamim ◽  
Tariq Mahmood ◽  
Monis Bin Abid

Nanoparticles are ultrafine structures with dimensions less than 100 nm. Nanoparticles have diverse applications. There are three important methods of fabrication of nanoparticles namely physical, chemical and biological methods. Physical method is a top down strategy for the fabrication of nanoparticles. It is energy intensive and time consuming. A chemical method is simple, but is expensive and requires expensive chemicals with high purity and also involves hazards of contaminations. Biological synthesis is very simple, cheap and environment friendly, requiring no expensive chemicals, temperature and is time saving. Plants and microorganisms are commonly used in this method. These are available everywhere. In the present work we synthesized Zinc Oxide (ZnO) nanoparticles by biological method using Aspargillus niger and zinc chloride (ZnCl2) as precursors. Biogenic synthesis of metallic nanoparticles by fungi is a safe and economical process because of formation of stable and small sized nanoparticles. Fungal biomass secretes proteins which act as reducing and stabilizing agents. The synthesized nanoparticles were characterized by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), UV-Vis (Ultraviolet, Visible) and EDX (Energy Dispersive X-Ray) techniques. Their size was in nm range and morphology of synthesized ZnO NPs was hexagonal. The ZnO nanoparticles are one of the most versatile materials and are used in cosmetics and in Bioenergy production, as a catalyst and as antibacterial material.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Mujahid Khan ◽  
Pundlik Ware ◽  
Navinchandra Shimpi

AbstractCreating a sustainable and effective approach to handling organic contaminants from industrial waste is an ongoing problem. In the present study, ZnO nanoparticles (ZnO NPs) were synthesized under a controlled ultrasound cavitation technique using the extract of Passiflora foetida fruit peels, which act as a reducing (i.e., reduction of metal salt) and stabilizing agent. The formation of monodispersed and hexagonal morphology (average size approximately 58 nm with BET surface area 30.83m2/g). The synthesized ZnO NPs were characterized by a various technique such as UV–visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Dynamic light scattering (DLS). Further, the XRD pattern confirmed the hexagonal wurtzite structure of synthesized ZnONPs. The ZnO NPs exhibit excellent degradation efficiency towards organic pollutant dyes, i.e., Methylene blue (MB) (93.25% removal) and Rhodamine B (91.06% removal) in 70 min, under natural sunlight with apparent rate constant 0.0337 min−1 (R2 = 0.9749) and 0.0347 min−1 (R2 = 0.9026) respectively.Zeta potential study shows the presence of a negative charge on the surface of ZnO NPs. The use of green synthesized ZnO NPs is a good choice for wastewater treatment, given their high reusability and photocatalytic efficiency, along with adaptability to green synthesis.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 344
Author(s):  
Madiha Batool ◽  
Shazia Khurshid ◽  
Walid M. Daoush ◽  
Sabir Ali Siddique ◽  
Tariq Nadeem

The present study aimed to develop the synthesis of zinc oxide nanoparticles (ZnO-NPs) using the green method, with Aloe barbadensis leaf extract as a stabilizing and capping agent. In vitro antitumor cytotoxic activity, as well as the surface-functionalization of ZnO-NPs and their drug loading capacity against doxorubicin (DOX) and gemcitabine (GEM) drugs, were also studied. Morphological and structural properties of the produced ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion X-ray diffraction (EDX), UV-Vis spectrophotometry, Fourier-transform infrared analysis (FTIR), and X-ray diffraction (XRD). The prepared ZnO-NPs had a hexagonal shape and average particle size of 20–40 nm, with an absorption peak at 325 nm. The weight and atomic percentages of zinc (50.58% and 28.13%) and oxygen (26.71% and 60.71%) were also determined by EDAX (energy dispersive x-ray analysis) compositional analysis. The appearance of the FTIR peak at 3420 m–1 confirmed the synthesis of ZnO-NPs. The drug loading efficiency (LE) and loading capacity (LC) of unstabilized and PEGylated ZnO-NPs were determined by doxorubicin (DOX) and gemcitabine (GEM) drugs. DOX had superior LE 65% (650 mg/g) and higher LC 32% (320 mg/g) than GEM LE 30.5% (30 mg/g) and LC 16.25% (162 mg/g) on ZnO-NPs. Similar observation was observed in the case of PEG-ZnO-NPs, where DOX had enhanced LE 68% (680 mg/g) and LC 35% (350) mg/g in contrast to GEM, which had LE and LC values of 35% (350 mg/g) and 19% (190 mg/g), respectively. Therefore, DOX was chosen to encapsulate nanoparticles, along with the untreated nanoparticles, to check their in vitro antiproliferative potential against the triple-negative breast cancer (TNBC) cell line (MDA-MB-231) through the MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. This drug delivery strategy implies that the PEGylated biogenically synthesized ZnO-NPs occupy an important position in chemotherapeutic drug loading efficiency and can improve the therapeutic techniques of triple breast cancer.


2019 ◽  
Vol 15 (2) ◽  
pp. 268-273 ◽  
Author(s):  
Raja Adibah Raja Ahmad ◽  
Zawati Harun ◽  
Mohd Hafiz Dzarfan Othman ◽  
Hatijah Basri ◽  
Muhamad Zaini Yunos ◽  
...  

Biosynthesis of metallic nanoparticles using plants, enzymes, and microorganism have been known as eco-friendly alternatives to conventional physical and chemical methods. Recently, the biological synthesis of nanoparticles has been a keen interest amongst researchers and scientist due to its simple technique, eco-friendliness, non-toxic, inexpensive and potential to perform in antibacterial activity. Thus, in this current work, the synthesis of zinc oxide (ZnO) nanoparticles using reduction agent from fruit extracts of Ananas Comosus is reported. The biosynthesized zinc oxide was characterized using Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray analysis (EDX), UV-Vis absorption spectroscopy and X-ray diffraction (XRD). The average size of the nanoparticles was found to be in the range of 30-57nm. The antibacterial activity of ZnO nanoparticles was carried out via agar diffusion method against pathogenic organisms. It is observed that the biosynthesized ZnO in the process has the efficient antibacterial activity. In conclusion, the green synthesis of zinc oxide nanoparticles using the fruit extract of Ananas Comosus is considered as a potential additive to substitute other metal oxides such as silver (Ag) and titanium dioxide (TiO2)but also provide antibacterial effect that able to enhance the nanoparticle performance.


Sign in / Sign up

Export Citation Format

Share Document