scholarly journals Green Synthesis and Biomedical Applications of ZnO Nanoparticles: Role of PEGylated-ZnO Nanoparticles as Doxorubicin Drug Carrier against MDA-MB-231(TNBC) Cells Line

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 344
Author(s):  
Madiha Batool ◽  
Shazia Khurshid ◽  
Walid M. Daoush ◽  
Sabir Ali Siddique ◽  
Tariq Nadeem

The present study aimed to develop the synthesis of zinc oxide nanoparticles (ZnO-NPs) using the green method, with Aloe barbadensis leaf extract as a stabilizing and capping agent. In vitro antitumor cytotoxic activity, as well as the surface-functionalization of ZnO-NPs and their drug loading capacity against doxorubicin (DOX) and gemcitabine (GEM) drugs, were also studied. Morphological and structural properties of the produced ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion X-ray diffraction (EDX), UV-Vis spectrophotometry, Fourier-transform infrared analysis (FTIR), and X-ray diffraction (XRD). The prepared ZnO-NPs had a hexagonal shape and average particle size of 20–40 nm, with an absorption peak at 325 nm. The weight and atomic percentages of zinc (50.58% and 28.13%) and oxygen (26.71% and 60.71%) were also determined by EDAX (energy dispersive x-ray analysis) compositional analysis. The appearance of the FTIR peak at 3420 m–1 confirmed the synthesis of ZnO-NPs. The drug loading efficiency (LE) and loading capacity (LC) of unstabilized and PEGylated ZnO-NPs were determined by doxorubicin (DOX) and gemcitabine (GEM) drugs. DOX had superior LE 65% (650 mg/g) and higher LC 32% (320 mg/g) than GEM LE 30.5% (30 mg/g) and LC 16.25% (162 mg/g) on ZnO-NPs. Similar observation was observed in the case of PEG-ZnO-NPs, where DOX had enhanced LE 68% (680 mg/g) and LC 35% (350) mg/g in contrast to GEM, which had LE and LC values of 35% (350 mg/g) and 19% (190 mg/g), respectively. Therefore, DOX was chosen to encapsulate nanoparticles, along with the untreated nanoparticles, to check their in vitro antiproliferative potential against the triple-negative breast cancer (TNBC) cell line (MDA-MB-231) through the MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. This drug delivery strategy implies that the PEGylated biogenically synthesized ZnO-NPs occupy an important position in chemotherapeutic drug loading efficiency and can improve the therapeutic techniques of triple breast cancer.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1743
Author(s):  
Majid Rasool Kamli ◽  
Maqsood Ahmad Malik ◽  
Vartika Srivastava ◽  
Jamal S. M. Sabir ◽  
Ehab Hussain Matter ◽  
...  

This study presents an inexpensive, eco-friendly, and simple green synthesis of ZnO nanoparticles using Origanum vulgare extract. These nanoparticles are non-hazardous, environmentally friendly, and cheaper than other methods of biosynthesis. Ongoing research determines the role of phytochemicals in the fabrication and biosynthesis of ZnO NPs and their role in antibacterial activity and biomedical applications. Characterizations by fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) determine the successful biosynthesis of ZnO NPs. Meanwhile, TEM and X-ray diffraction studies approximated the spherical morphology and crystalline nature of biosynthesized ZnO NPs of nano size in the range of 20–30 nm. The global increase in drug resistance necessitates the search for new drugs with different mechanisms of action. Quorum sensing (QS), a cell-to-cell communication, has gained attention as an emerging drug target. It controls numerous biochemical processes in bacteria, which are essential for their survival and pathogenicity. The potential of nanomedicines has also been tested to synthesize new antibiotics to tackle drug resistance. ZnO NPs were explored for their antibacterial, antiquorum sensing, and antibiofilm activities with a bioreporter strain of Chromobacterium violaceum. Susceptibility testing results indicated the potential antibacterial activity of ZnO NPs with a minimum inhibitory concentration (MIC) of 4 µg/mL and minimum bactericidal concentration (MBC) of 16 µg/mL. Antiquorum-sensing assays revealed that these nanoparticles inhibit quorum sensing with minimum antiquorum sensing activity (MQSIC) of 1 µg/mL, without causing any bacterial growth inhibition. In addition, ZnO NPs inhibit biofilm formation at inhibitory and higher concentrations. RT-qPCR results supported the downregulation of the quorum sensing genes when C. violaceum was treated with ZnO NPs. The outcomes of this study are promising with regard to the biofilm and quorum sensing, emphasizing the potential applications of ZnO NPs against bacterial communication and biofilm formation.


2018 ◽  
Vol 42 (1) ◽  
pp. 18-22
Author(s):  
Khitam S. S

     This research aims to prepare ZnO NPs by using chemical bath deposition way from ZnSO4 and NaOH as starting materials. It was examined by X-ray diffraction, Scanning Electron Microscopy, Zeta potential and Fourier Transformation Infrared. Scanning Electron Microscopy images showed various morphological changes of ZnO nanoparticles obtained by the above method and the different magnification Scanning Electron Microscopy images of the nanoparticle and confirms that the Nano flowers are grown with well-defined morphology and diameters varying between 60-110 nm. The effect of Zinc oxide nanoparticles against bacteria staphylococcus aureus, E.coli and Pseudomous aeruginosa showed the ability of this substance to inhibit the growth of all types of bacteria in different concentrations. The percentage of survival bacteria was (2, 3.7 and 6%) for E.coli bacteria and (1, 1.5 and 5 %) for Pseudomous aeruginosa bacteria, while the percentage was (0.8, 1 and 1.5 %) for staphylococcus aurous respectively for all concentration.


Author(s):  
Rutuja V. Kamble ◽  
Somnath D. Bhinge ◽  
Shrinivas K. Mohite ◽  
Dheeraj S. Randive ◽  
Mangesh A. Bhutkar

AbstractThe intention of the present work was to synthesize the f-MWCNT and f-SWCNT terminated with proper functional group, loading of 5-Flurouracil and to perform cytotoxic activity. Functionalization of MWCNTs and SWCNTs was achieved through the acid treatment (H2SO4 + HNO3). 5-flurouracil was loaded into the prepared functionalized CNTs, thereafter; in vitro drug loading capacity and % drug release were calculated. Also the prepared f-CNTs, 5-flurouracil loaded CNTs were distinguished by using SEM, TGA, DSC, X-ray diffraction, Raman and FTIR spectroscopy. MCF-7 and COLO320DM cells were treated with selected concentrations of 5-FU loaded f-MWCNTs and f-SWCNTs to estimate the cytotoxic activity. It was observed that 5-FU loaded f-SWCNTs showed good activity against selected cell lines than others. Moreover, apoptosis percentage was reported to be 84.46 ± 4.3515 and 92.78 ± 2.6549 for 5-FU loaded f-SWCNTs against MCF-7 and COLO320DM cells respectively. It is evident from the results that the prepared drug loaded CNTs have comparable antitumor activity in cancer cell lines.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


Author(s):  
M. Shah ◽  
D. Patel

Oxcarbazepine has low solubility and low oral bioavailability, so it’s a challenge to formulate suitable dosage form. In this present investigation, to improve the dissolution rate and solubility, skimmed milk is used as a carrier. Physical mixers were prepared using various drugs to carrier ratio and spray drying technology was used to develop solid dispersion with the carrier. Various techniques were used to characterize the solid dispersion immediately after they were made which includes differential scanning calorimetry, scanning electron microscopy, fourier transform infra- red spectroscopy, X-ray diffraction and in-vitro dissolution profiles. The differential scanning calorimetry thermograms of raw drug indicated of its anhydrous crystalline nature. In thermograms of solid dispersion, the characteristic peak was absent suggesting the change from crystalline nature to amorphous form. X-ray diffraction confirmed those results. X-ray diffraction results of raw drug showed highly intense peak characteristic of its crystalline nature where solid dispersion showed less intense, more diffused peak indicating the change in crystalline form. Fourier transforms infra-red spectroscopy studies showed there was no interaction between drug and carrier. Scanning electron microscopy support the amorphous nature of mixer. The whole formulation showed distinct enhancement in the drug release behavior and solubility. The optimum oxcarbazepine to skimmed milk ratio 1:3 enhances the in-vitro drug release by 3.5 fold and also show distinct increase in solubility. It was concluded that for improvement of solubility of poorly water soluble oxcarbazepine, skimmed milk powder as a carrier can be utilize very well.


2006 ◽  
Vol 514-516 ◽  
pp. 985-989
Author(s):  
B.J.M. Leite Ferreira ◽  
M.G.G.M. Duarte ◽  
M. Helena Gil ◽  
Rui N. Correia ◽  
J. Román ◽  
...  

Two materials with potential application in bone tissue repair have been developed: 1) a non-biodegradable composite based in a new methacrylic-co-acrylic matrix; and 2) a biodegradable composite based in a chitosan (Ch) matrix. Both matrices were reinforced with glass-ceramic particles of composition (mol%) 70 SiO2 – 30 CaO. The in vitro bioactivity of composites was assessed by soaking in simulated body fluid (SBF) for periods of up to 7 days at 37º C. X-ray diffraction (XRD) and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy (SEM-EDS) were used for deposit identification after different soaking periods. Calcium phosphate particulate deposits were detected after 3 days of immersion, followed by growth and maturation towards apatite.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gebretinsae Yeabyo Nigussie ◽  
Gebrekidan Mebrahtu Tesfamariam ◽  
Berhanu Menasbo Tegegne ◽  
Yemane Araya Weldemichel ◽  
Tesfakiros Woldu Gebreab ◽  
...  

We report in this paper antibacterial activity of Ag-doped TiO2 and Ag-doped ZnO nanoparticles (NPs) under visible light irradiation synthesized by using a sol-gel method. Structural, morphological, and basic optical properties of these samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectrum, and UV-Vis reflectance. Room temperature X-ray diffraction analysis revealed that Ag-doped TiO2 has both rutile and anatase phases, but TiO2 NPs only have the anatase phase. In both ZnO and Ag-doped ZnO NPs, the hexagonal wurtzite structure was observed. The morphologies of TiO2 and ZnO were influenced by doping with Ag, as shown from the SEM images. EDX confirms that the samples are composed of Zn, Ti, Ag, and O elements. UV-Vis reflectance results show decreased band gap energy of Ag-doped TiO2 and Ag-doped ZnO NPs in comparison to that of TiO2 and ZnO. Pathogenic bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, were used to assess the antibacterial activity of the synthesized materials. The reduction in the viability of all the three bacteria to zero using Ag-doped ZnO occurred at 60 μg/mL of culture, while Ag-doped TiO2 showed zero viability at 80 μg/mL. Doping of Ag on ZnO and TiO2 plays a vital role in the increased antibacterial activity performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Suping Ji ◽  
Xiao Lin ◽  
Enjiang Yu ◽  
Chengyang Dian ◽  
Xiong Yan ◽  
...  

The objective of this study was to prepare curcumin-loaded mixed Soluplus/TPGS micelles (Cur-TPGS-PMs) for oral administration. The Cur-TPGS-PMs showed a mean size of 65.54 ± 2.57 nm, drug encapsulation efficiency over 85%, and drug loading of 8.17%. The Cur-TPGS-PMs were found to be stable in various pH media (pH 1.2 for 2 h, pH 6.8 for 2 h, and pH 7.4 for 6 h). The X-ray diffraction (XRD) patterns illustrated that curcumin was in the amorphous or molecular state within PMs. The In vitro release test indicated that Cur-TPGS-PMs possessed a significant sustained-release property. The cell viability in MCF-7 cells was found to be relatively lower in Cur-TPGS-PM-treated cells as compared to free Cur-treated cells. CLSM imaging revealed that mixed micelles were efficiently absorbed into the cytoplasm region of MCF-7 cells. Therefore, Cur-TPGS-PMs could have the significant value for the chronic breast cancer therapy.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 180
Author(s):  
Irina Atkinson ◽  
Ana Maria Seciu-Grama ◽  
Oana Catalina Mocioiu ◽  
Ana Maria Mocioiu ◽  
Luminita Predoana ◽  
...  

In recent years, the rising number of bone diseases which affect millions of people worldwide has led to an increased demand for materials with restoring and augmentation properties that can be used in therapies for bone pathologies. In this work, PMMA- MBG composite scaffolds containing ceria (0, 1, 3 mol%) were obtained by the phase separation method. The obtained composite scaffolds were characterized by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. UV–Vis measurement and EDX analysis confirmed the presence of cerium ions in the composite scaffolds. Evaluation of the in-vitro biocompatibility using MTT assay showed that composite scaffold containing 1 mol% of ceria presented higher viability than control cells (100%) for concentrations ranging between 5 and 50% after 96 h of incubation.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2321 ◽  
Author(s):  
Pistone ◽  
Celesti ◽  
Piperopoulos ◽  
Ashok ◽  
Cembran ◽  
...  

Bioabsorbable materials have received increasing attention as innovative systems for the development of osteoconductive biomaterials for bone tissue engineering. In this paper, chitosan-based composites were synthesized adding hydroxyapatite and/or magnetite in a chitosan matrix by in situ precipitation technique. Composites were characterized by optical and electron microscopy, thermogravimetric analyses (TGA), x-ray diffraction (XRD), and in vitro cell culture studies. Hydroxyapatite and magnetite were found to be homogeneously dispersed in the chitosan matrix and the composites showed superior biocompatibility and the ability to support cell attachment and proliferation; in particular, the chitosan/hydroxyapatite/magnetite composite (CS/HA/MGN) demonstrated superior bioactivity with respect to pure chitosan (CS) and to the chitosan/hydroxyapatite (CS/HA) scaffolds


Sign in / Sign up

Export Citation Format

Share Document