scholarly journals Feasibility of Application of the Newly Developed Nano-Biomaterial, β-TCP/PDLLA, in Maxillofacial Reconstructive Surgery: A Pilot Rat Study

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 303
Author(s):  
Erina Toda ◽  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Quang Ngoc Dong ◽  
Huy Xuan Ngo ◽  
...  

This study was performed to examine the applicability of the newly developed nano-biocomposite, β-tricalcium phosphate (β-TCP)/u-HA/poly-d/l-lactide (PDLLA), to bone defects in the oral and maxillofacial area. This novel nano-biocomposite showed several advantages, including biocompatibility, biodegradability, and osteoconductivity. In addition, its optimal plasticity also allowed its utilization in irregular critical bone defect reconstructive surgery. Here, three different nano-biomaterials, i.e., β-TCP/PDLLA, β-TCP, and PDLLA, were implanted into critical bone defects in the right lateral mandible of 10-week-old Sprague–Dawley (SD) rats as bone graft substitutes. Micro-computed tomography (Micro-CT) and immunohistochemical staining for the osteogenesis biomarkers, Runx2, osteocalcin, and the leptin receptor, were performed to investigate and compare bone regeneration between the groups. Although the micro-CT results showed the highest bone mineral density (BMD) and bone volume to total volume (BV/TV) with β-TCP, immunohistochemical analysis indicated better osteogenesis-promoting ability of β-TCP/PDLLA, especially at an early stage of the bone healing process. These results confirmed that the novel nano-biocomposite, β-TCP/PDLLA, which has excellent biocompatibility, bioresorbability and bioactive/osteoconductivity, has the potential to become a next-generation biomaterial for use as a bone graft substitute in maxillofacial reconstructive surgery.

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Huy Xuan Ngo ◽  
Quang Ngoc Dong ◽  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Shinji Ishizuka ◽  
...  

Uncalcined/unsintered hydroxyapatite and poly-l-lactide-co-glycolide (u-HA/PLLA/PGA) is a new bioresorbable nanomaterial with superior characteristics compared with current bioresorbable materials, including appropriate mechanical properties, outstanding bioactive/osteoconductive features, and remarkably shorter resorption time. Nevertheless, the bone regeneration characteristics of this nanomaterial have not been evaluated in maxillofacial reconstructive surgery. In this study, we used a rat mandible model to assess the bone regeneration ability of u-HA/PLLA/PGA material, compared with uncalcined/unsintered hydroxyapatite and poly-l-lactide acid (u-HA/PLLA) material, which has demonstrated excellent bone regenerative ability. A 4-mm-diameter defect was created at the mandibular angle area in 28 Sprague Dawley male rats. The rats were divided into three groups: u-HA/PLLA/PGA (u-HA/PLLA/PGA graft + defect), u-HA/PLLA (u-HA/PLLA graft + defect), and sham control (defect alone). At 1, 3, 8, and 16 weeks after surgeries, the rats were sacrificed and assessed by micro-computed tomography, histological analysis with hematoxylin and eosin staining, and immunohistochemical analyses. The results confirmed that the accelerated bone bioactive/regenerative osteoconduction of u-HA/PLLA/PGA was comparable with that of u-HA/PLLA in the rat mandible model. Furthermore, this new regenerative nanomaterial was able to more rapidly induce bone formation in the early stage and had great potential for further clinical applications in maxillofacial reconstructive surgery.


2021 ◽  
Vol 11 (5) ◽  
pp. 2116
Author(s):  
Rafael Otero-Pérez ◽  
María Permuy ◽  
Estefanía López-Senra ◽  
Miriam López-Álvarez ◽  
Mónica López-Peña ◽  
...  

Autogenous cancellous bone graft is the current gold standard of treatment for the management of bone defects since it possesses the properties of osteoinduction, osteoconduction, and osteogenesis. Xenografts and synthetic grafts have been widely reported as available and low-cost alternatives, which retain good osteoconductive and mechanical properties. Given the rich biodiversity of ocean organisms, marine sources are of particular interest in the search for alternative bone grafts with enhanced functionalities. The purpose of this paper is to assess the biocompatibility of a marine-derived bone graft obtained from shark tooth, which is an environmentally sustainable and abundant raw material from fishing. This research presents the findings of a preclinical trial—following UNE-EN ISO 10993—that induced a critical-sized bone defect in a rabbit model and compared the results with a commercial bovine-derived bone graft. Evaluation by micro-computed tomography and histomorphometric analysis 12 weeks after implantation revealed good osseointegration, with no signs of inflammatory foreign body reactions, fibrosis, or necrosis in any of the cases. The shark tooth-derived bone graft yielded significantly higher new bone mineral density values (54 ± 6%) than the control (27 ± 8%). Moreover, the percentage of intersection values were much higher (86 ± 8%) than the bovine-derived bone graft (30 ± 1%) used as control. The area of occupancy by bone tissue in the test material (38 ± 5%) also gave higher values than the control (30 ± 6%). The role of physicochemical properties, biphasic structure, and composition on the stimulation of bone regeneration is also discussed.


2019 ◽  
Vol 17 (1) ◽  
pp. 228080001982779 ◽  
Author(s):  
Wenyue Zheng ◽  
Longjiang Ding ◽  
Yufei Wang ◽  
Sili Han ◽  
Sainan Zheng ◽  
...  

Nowadays, dental caries is one of the most common oral health problems, affecting most individuals. It has been found that, by remineralizing enamel at an early stage in the formation of enamel caries, teeth can be effectively protected from dental caries. In this work, a peptide with eight repetitive sequences of aspartate-serine-serine (8DSS) is applied as the bio-mineralizer in an in-vivo rat enamel caries model. Nondestructive quantitative light-induced fluorescence-digital (QLF-D) imaging and micro-computed tomography (micro-CT) are used to evaluate the remineralization of enamel carious lesions by measuring the total fluorescence radiance loss of the molar area (Δ QTotal), acquired using QLF-D imaging, and the mineral density and residual molar enamel volume, acquired using micro-CT. Correlations are explored between Δ QTotal and mineral density (strong correlation, r = 0.8000, p < 0.001) and Δ QTotal and residual molar enamel volume (moderate correlation, r = 0.6375, p < 0.001). Our results demonstrate that 8DSS is a promising in-vivo remineralization agent that exhibits comparable effects to NaF ( p < 0.05), which has been verified using the classical Keyes method. Moreover, the nondestructive QLF-D and micro-CT methods can be combined to quantify the remineralization of enamel carious lesions three-dimensionally in vivo, making them broadly applicable in quantifying hard tissues.


2021 ◽  
Vol 22 (14) ◽  
pp. 7549
Author(s):  
Wiktor Paskal ◽  
Adriana M. Paskal ◽  
Piotr Pietruski ◽  
Albert Stachura ◽  
Kacper Pełka ◽  
...  

The aim of the study was to evaluate if a pre-incisional N-acetylcysteine (NAC) treatment altered the process of wound healing in a rat model. The dorsal skin of 24 Sprague-Dawley rats was incised in six locations. Before the incisions were made, skin was injected either with lidocaine and epinephrine (one side) or with these agents supplemented with 0.015%, 0.03%, or 0.045% NAC (contralaterally). Photographic documentation of the wound healing process was made at 11 time points. Rats were sacrificed 3, 7, 14, or 60 days after incision to excise scars for histological analysis. They included: Abramov scale scoring, histomorphometry analysis, and collagen fiber arrangement assessment. Skin pretreated with 0.03% NAC produced the shortest scars at all analyzed time points, though this result was statistically insignificant. At this NAC concentration the scars had smaller areas on the third day and were narrower on the day 4 compared with all the other groups (p < 0.05). On day 7, at the same concentration of NAC, the scars had a higher superficial concentration index (p = 0.03) and larger dermal proliferation area (p = 0.04). NAC addition to pre-incisional anesthetic solution decreased wound size and width at an early stage of scar formation at all concentrations; however, with optimal results at 0.03% concentration.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yuhui Chen ◽  
He Cao ◽  
Dawei Sun ◽  
Changxin Lin ◽  
Liang Wang ◽  
...  

Bone fracture is a global healthcare issue for high rates of delayed healing and nonunions. Although n-3 polyunsaturated fatty acid (PUFA) is considered as a beneficial factor for bone metabolism, only few studies till date focused on the effects of n-3 PUFAs on fracture healing. In this study, we investigated the effect of endogenous n-3 PUFAs on fracture healing by measuring femur fracture repair in bothfat-1transgenic mice and WT mice. Proximal femoral fracture model was established infat-1transgenic mice and WT mice, respectively, and then the fracture was analyzed by using X-ray, micro-computed tomography (micro-CT), and histological assessment at 7, 14, 21, 28, and 35 days after fixation. The results showed that compared with WT mice,fat-1mice exhibited acceleration in fracture healing through radiographic and histological analysis (18–21 days versus 21–28 days postfracture). Meanwhile, X-ray and micro-CT analysis that showed better remodeling callus formation were in thefat-1group compared to WT group. Furthermore, histological analysis revealed that endogenous n-3 PUFAs promoted local endochondral ossification and accelerated the remodeling of calcified calluses after fracture. In conclusion, the present study indicated that endogenously produced n-3 PUFAs promote fracture healing process and accelerate bone remodeling in mice, and supplementation of n-3 PUFAs was positively associated with fracture healing.


2016 ◽  
Vol 40 (6) ◽  
pp. 496-502 ◽  
Author(s):  
S Hayashi-Sakai ◽  
N Numa-Kinjoh ◽  
M Sakamoto ◽  
J Sakai ◽  
J Matsuyama ◽  
...  

Objective: Most cases of hypophosphatasia (HPP) exhibit early loss of primary teeth. Results of micro-computed tomography (micro-CT) analysis of teeth with HPP have not yet been reported. The purpose of the present study was to describe the size and mineral density distribution and mapping of exfoliated teeth with HPP using micro CT. Study design: Seven exfoliated teeth were obtained from a patient with HPP. Exfoliated teeth sizes were measured on micro CT images and mineral densities of the mandibular primary central incisors were determined. Results: Partial dentures were fabricated for the patient to replace the eight primary teeth which had exfoliated. Most primary teeth sizes were within the normal range. The mean values of enamel and dentin mineral densities in teeth with HPP were 1.35 and 0.88 g/cm3, respectively, in the mandibular primary central incisors. Conclusion: Mineral density distribution and mapping revealed that the values in teeth with HPP were lower than the homonymous teeth controls in all regions from the crown to apex. Furthermore, it was demonstrated that the differences between HPP and controls were larger on the crown side and the differences tended to converge on the apex side. These results suggested that the present patient showed mild hypomineralization in the primary dentition.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiangfeng Liu ◽  
Huijun Kang ◽  
Jiangfeng Lu ◽  
Yike Dai ◽  
Fei Wang

Abstract Background Poor osseointegration is the key reason for implant failure after arthroplasty,whether under osteoporotic or normal bone conditions. To date, osseointegration remains a major challenge. Recent studies have shown that deferoxamine (DFO) can accelerate osteogenesis by activating the hypoxia signaling pathway. The purpose of this study was to test the following hypothesis: after knee replacement, intra-articular injection of DFO will promote osteogenesis and osseointegration with a 3D printed titanium prosthesis in the bones of osteoporotic rats. Materials and methods Ninety female Sprague–Dawley rats were used for the experiment. Ten rats were used to confirm the successful establishment of the osteoporosis model: five rats in the sham operation group and five rats in the ovariectomy group. After ovariectomy and knee arthroplasty were performed, the remaining 80 rats were randomly divided into DFO and control groups (n = 40 per group). The two groups were treated by intraarticular injection of DFO and saline respectively. After 2 weeks, polymerase chain reaction (PCR) and immunohistochemistry were used to evaluate the levels of HIF-1a, VEGF, and CD31. HIF-1a and VEGF have been shown to promote angiogenesis and bone regeneration, and CD31 is an important marker of angiogenesis. After 12 weeks, the specimens were examined by micro-computed tomography (micro-CT), biomechanics, and histopathology to evaluate osteogenesis and osseointegration. Results The results of PCR showed that the mRNA levels of VEGF and CD31 in the DFO group were significantly higher than those in the control group. The immunohistochemistry results indicated that positive cell expression of HIF-1a, VEGF, and CD31 in the DFO group was also higher. Compared with the control group, the micro-CT parameters of BMD, BV/TV, TB. N, and TB. Th were significantly higher. The maximal pull-out force and the bone-to-implant contact value were also higher. Conclusions The local administration of DFO, which is used to activate the HIF-1a signaling pathway, can promote osteogenesis and osseointegration with a prosthesis in osteoporotic bone.


2020 ◽  
Author(s):  
Esther Wehrle ◽  
Duncan C Tourolle né Betts ◽  
Gisela A Kuhn ◽  
Erica Floreani ◽  
Malavika H Nambiar ◽  
...  

AbstractThorough preclinical evaluation of novel biomaterials for treatment of large bone defects is essential prior to clinical application. Using in vivo micro-computed tomography (micro-CT) and mouse femoral defect models with different defect sizes, we were able to detect spatio-temporal healing patterns indicative of physiological and impaired healing in three defect sub-volumes and the adjacent cortex. The time-lapsed in vivo micro-CT-based approach was then applied to evaluate the bone regeneration potential of biomaterials using collagen and BMP-2 as test materials. Both collagen and BMP-2 treatment led to distinct changes in bone turnover in the different healing phases. Despite increased periosteal bone formation, 87.5% of the defects treated with collagen scaffolds resulted in non-unions. Additional BMP-2 application significantly accelerated the healing process and increased the union rate to 100%. This study further shows potential of time-lapsed in vivo micro-CT for capturing spatio-temporal deviations preceding non-union formation and how this can be prevented by application of biomaterials.This study therefore supports the application of longitudinal in vivo micro-CT for discrimination of normal and disturbed healing patterns and for the spatio-temporal characterization of the bone regeneration capacity of biomaterials.


2021 ◽  
Vol 6 (1) ◽  
pp. 16-26
Author(s):  
A. V. Veremeev ◽  
R. N. Bolgarin ◽  
V. G. Nesterenko ◽  
A. A. Andreev-Andrievskiy

Aim. To evaluate the efficiency of bone repair on a critical-sized rat calvarial defect model using our original xenogeneic bone mineral, widely established Geistlich Bio-Oss®, and autologous bone graft.Materials and Methods. We created a critical-sized calvarial defect in Sprague-Dawley rats (n = 48) and then divided them into 4 groups (unfilled defect, autologous bone graft, Geistlich BioOss® and our original xenogeneic bone mineral, 12 rats per group). Rats were sacrificed upon 4 and 12 months (6 rats per time point) with the following excision of the implant and adjacent tissues. 3D structure, extent of mineralisation, and bone volume were measured by means of microcomputed tomography. Microanatomy of the explants and adjacent tissue was investigated by haematoxylin and eosin staining.Results. The highest and the lowest bone volume was expectedly detected when the defect was filled with the autologous bone graft or remained unfilled, respectively. Replacement of the defect by the original bone mineral entailed better regeneration as compared to Geistlich Bio-Oss. Bone mineral density, bone thickness and the extent of mineralisation did not differ significantly between the experimental groups and were close to the positive control values, indicating efficient bone repair.Conclusions. Original xenogeneic bone mineral promotes induction of bone regeneration as compared to Geistlich Bio-Oss®, a commercially available bone mineral widely used in the clinical practice.


2020 ◽  
Vol 10 (24) ◽  
pp. 8939
Author(s):  
Giulia Molino ◽  
Giorgia Montalbano ◽  
Carlotta Pontremoli ◽  
Sonia Fiorilli ◽  
Chiara Vitale-Brovarone

For long time, osteoporosis (OP) was exclusively associated with an overall bone mass reduction, leading to lower bone strength and to a higher fracture risk. For this reason, the measurement of bone mineral density through dual X-ray absorptiometry was considered the gold standard method for its diagnosis. However, recent findings suggest that OP causes a more complex set of bone alterations, involving both its microstructure and composition. This review aims to provide an overview of the most evident osteoporosis-induced alterations of bone quality and a résumé of the most common imaging techniques used for their assessment, at both the clinical and the laboratory scale. A particular focus is dedicated to the micro-computed tomography (micro-CT) due to its superior image resolution, allowing the execution of more accurate morphometric analyses, better highlighting the architectural alterations of the osteoporotic bone. In addition, micro-CT has the potential to perform densitometric measurements and finite element method analyses at the microscale, representing potential tools for OP diagnosis and for fracture risk prediction. Unfortunately, technological improvements are still necessary to reduce the radiation dose and the scanning duration, parameters that currently limit the application of micro-CT in clinics for OP diagnosis, despite its revolutionary potential.


Sign in / Sign up

Export Citation Format

Share Document