scholarly journals Nanomaterial Synthesis in Ionic Liquids and Their Use on the Photocatalytic Degradation of Emerging Pollutants

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 411
Author(s):  
Raquel Corchero ◽  
Rosario Rodil ◽  
Ana Soto ◽  
Eva Rodil

The unique properties of ionic liquids make them suitable candidates to prepare nanoscale materials. A simple method that uses exclusively a corresponding bulk material and an ionic liquid—in this case, [P6,6,6,14]Cl—was used to prepare AgCl nanoparticles and AgCl@Fe3O4 or TiO2@Fe3O4 magnetic nanocomposites. The prepared nanomaterials were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. The photodegradation of atenolol as a model pharmaceutical pollutant in wastewater was investigated under ultraviolet–visible light irradiation using the different synthesized nanocatalysts. In the presence of 0.75 g·L−1 AgCl nanoparticles, a practically complete degradation of 10 ppm of atenolol was obtained after 30 min, following pseudo-first-order reaction kinetics. The effect of different variables (concentrations, pH, oxidant agents, etc.) was analyzed. The recyclability of the nanocatalyst was tested and found to be successful. A degradation mechanism was also proposed. In order to improve the recovery stage of the nanocatalyst, the use of magnetic nanocomposites is proposed. Under the same experimental conditions, a slightly lower and slower degradation was achieved with an easier separation. The main conclusions of the paper are the suitability of the use of ionic liquids to prepare different nanocatalysts and the effectiveness of these at degrading an emerging pollutant in wastewater treatment.

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Junying Yang ◽  
Minye Huang ◽  
Shengsen Wang ◽  
Xiaoyun Mao ◽  
Yueming Hu ◽  
...  

In this study, a magnetic copper ferrite/montmorillonite-k10 nanocomposite (CuFe2O4/MMT-k10) was successfully fabricated by a simple sol-gel combustion method and was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunner–Emmett–Teller (BET) method, vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). For levofloxacin (LVF) degradation, CuFe2O4/MMT-k10 was utilized to activate persulfate (PS). Due to the relative high adsorption capacity of CuFe2O4/MMT-k10, the adsorption feature was considered an enhancement of LVF degradation. In addition, the response surface methodology (RSM) model was established with the parameters of pH, temperature, PS dosage, and CuFe2O4/MMT-k10 dosage as the independent variables to obtain the optimal response for LVF degradation. In cycle experiments, we identified the good stability and reusability of CuFe2O4/MMT-k10. We proposed a potential mechanism of CuFe2O4/MMT-k10 activating PS through free radical quenching tests and XPS analysis. These results reveal that CuFe2O4/MMT-k10 nanocomposite could activate the persulfate, which is an efficient technique for LVF degradation in water.


Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Yuelong Xu ◽  
Bin Ren ◽  
Ran Wang ◽  
Lihui Zhang ◽  
Tifeng Jiao ◽  
...  

In the present study, nanoscale rod-shaped manganese oxide (MnO) mixtures were successfully prepared from graphitic carbon nitride (C3N4) and potassium permanganate (KMnO4) through a hydrothermal method. The as-prepared MnO nanomixtures exhibited high activity in the adsorption and degradation of methylene blue (MB). The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), surface area analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Furthermore, the effects of the dose of MnO nanomixtures, pH of the solution, initial concentration of MB, and the temperature of MB removal in dye adsorption and degradation experiments was investigated. The degradation mechanism of MB upon treatment with MnO nanomixtures and H2O2 was studied and discussed. The results showed that a maximum adsorption capacity of 154 mg g−1 was obtained for a 60 mg L−1 MB solution at pH 9.0 and 25 °C, and the highest MB degradation ratio reached 99.8% under the following optimum conditions: 50 mL of MB solution (20 mg L−1) at room temperature and pH ≈ 8.0 with 7 mg of C, N-doped MnO and 0.5 mL of H2O2.


2014 ◽  
Vol 215 ◽  
pp. 158-162
Author(s):  
Liudmila E. Bykova ◽  
V.G. Myagkov ◽  
I.A. Tambasov ◽  
O.A. Bayukov ◽  
Victor S. Zhigalov ◽  
...  

A simple method for obtaining ZnO-Fe3O4 nanocomposites using solid-state reaction Zn + 3Fe2O3 ZnO + 2Fe3O4 is suggested. An analysis of the characteristics and properties of ZnO-Fe3O4 nanocomposites was carried out by a combination of structural and physical methods (X-ray diffraction, scanning electron microscopy, photoelectron spectroscopy, Mössbauer measurements, X-ray fluorescent analysis, and magnetic measurements). The magnetization of the hybrid ZnO-Fe3O4 films is equal to 440 emu/cm3. The resulting Fe3O4 nanoparticles are surrounded by a ZnO shell and have sizes ranging between 20 and 40 nm.


2015 ◽  
Vol 44 (1) ◽  
pp. 7-12 ◽  
Author(s):  
H.Y. Zhang ◽  
H.J. Niu ◽  
Y.M. Wang ◽  
C. Wang ◽  
X.D. Bai, ◽  
...  

Purpose – The purpose of this paper was to provide a simple method for the preparation of carbon nanotubes (CNTs) by pyrolysing sunflower seed hulls and sago and to evaluate the application of such CNTs in supercapacitors. Design/methodology/approach – The CNTs were obtained by pyrolysing sunflower seed hulls and sago at 800°C. The prepared CNTs were studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammograms, galvanostatic charge and discharge and electrochemical impedance spectra methods. Findings – The CNTs had large surface areas as determined by the methylene blue method and the Brunauer – Emmett – Teller method. And the CNTs that were prepared by pyrolysing the natural sunflower seed hulls (denoted as CNTs-1) and sago (denoted as CNTs-2) had capacitances of 86.9 F/g and 26.7 F/g, respectively. Research limitations/implications – The capacitances of CNTs can be further improved. Practical implications – The exceptional electronic and mechanical properties of CNTs prepared lend the CNTs to diverse applications including electrocatalysts, hydrogen storage, photovoltaic devices actuators, energy storage, field-emitting flat panel displays and composites. Originality/value – Currently, CNTs have not yet been used in the industry at a mass production scale due to high costs associated. The outcomes of the study reported in this article could provide a convenient method in aid of industrialisation of the production of CNTs.


2020 ◽  
Author(s):  
Renuka Singh ◽  
Shukla Majhi ◽  
Keshav Sharma ◽  
Mohd. Ali ◽  
Chandra Shekhar Pati Tripathi ◽  
...  

<p>In this work, we present a simple method for the synthesis of metal ions stabilized on dopamine modified iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@DA@M<sup>x+</sup>) and their catalytic applications in important organic transformation reactions. Two different metal ions (Cu<sup>+1</sup> and Ru<sup>2+</sup>) are studied in this work. It is observed that both synthesized Fe<sub>3</sub>O<sub>4</sub>@DA@Cu<sup>+ </sup>and Fe<sub>3</sub>O<sub>4</sub>@DA@Ru<sup>2+ </sup>can effortlessly be separated from the reaction medium by positioning an external magnetic field. Dopamine, which is used as an anchor between Fe<sub>3</sub>O<sub>4</sub> and metal ions, increases the solubility of catalyst in reaction medium and prevents leaching of metal ions from the catalyst surface. Here Fe<sub>3</sub>O<sub>4</sub>@DA@Cu<sup>+ </sup>is used in the synthesis of 1,2,3-triazole derivatives via azide-alkyne cycloaddition reactions and Fe<sub>3</sub>O<sub>4</sub>@DA@Ru<sup>2+ </sup>is used for transfer hydrogenation reaction of various aryl ketones. The Fe<sub>3</sub>O<sub>4</sub>@DA@M<sup>x+</sup> nanocomposite is characterized via powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic absorption spectroscopy (AAS), thermogravimetric analysis (TGA) and vibrating-sample magnetometer (VSM). The Fe<sub>3</sub>O<sub>4</sub>@DA@M<sup>x+</sup> catalytic systems can be reused in the reaction mixture up to five times without significant loss in their catalytic activity.</p>


2020 ◽  
Vol 71 (1) ◽  
pp. 28-38
Author(s):  
Elena Ionela Neacsu ◽  
Virgil Constantin ◽  
Marian Burada ◽  
Cristina Donath ◽  
Vasile Soare ◽  
...  

Ternary ZnNiP alloy thin films were electroless deposited from aqueous chloride electrolytes on mild steel foils. The films were characterized by scanning electron microscopy (SEM) and dispersive X-ray microanalysis (EDAX). The corrosion behaviour of ZnNiP thin films alloys was investigated in two deep eutectic solvent ionic liquids (DES) with different chemical structure at 353K and compared with corrosion in 3.5% NaCl aqueous solution at 273K. The films were characterized by X-ray photoelectron spectroscopy (XPS) to determine their chemical composition in the initial stage and after corrosion. The nature of corrosion morfology has been investigated by and electron microscopy and XPS. The value of the lowest corrosion protection efficiency was of 48.14% and the highest value was of 77.96%. The results confirmed the high corrosion resistance of ZnNiP alloy plated sheet in all ionic liquids systems tested and the results were corelated with corrosion data in aqueous solution. The passive layer consists of Zn and Ni oxides but also of the chemical compounds of nitrogen which were formed on the surface of the ZnNiP thin films during the corrosion process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. Murugadoss ◽  
D. Dinesh Kumar ◽  
M. Rajesh Kumar ◽  
N. Venkatesh ◽  
P. Sakthivel

AbstractHigh quality silver (Ag) decorated CeO2 nanoparticles were prepared by a facile one-step chemical method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), fourier transform infrared spectrometer (FT-IR), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), UV–Visible absorption (UV–Vis), photoluminescence (PL) and thermogravimetric analysis. The decoration of Ag on CeO2 surface was confirmed by XRD, EPR and HR-TEM analysis. Harmful textile pollutant Rose Bengal dye was degraded under sunlight using the novel Ag decorated CeO2 catalyst. It was found that great enhancement of the degradation efficiency for Ag/CeO2 compared to pure CeO2, it can be ascribed mainly due to decrease in its band gap and charge carrier recombination rate. The Ag/CeO2 sample exhibited an efficient photocatalytic characteristic for degrading RB under visible light irradiation with a high degradation rate of 96% after 3 h. With the help of various characterizations, a possible degradation mechanism has been proposed which shows the effect of generation of oxygen vacancies owing to the decoration of Ag on the CeO2 surface.


NANO ◽  
2017 ◽  
Vol 12 (03) ◽  
pp. 1750031 ◽  
Author(s):  
Xiao-Feng Zhang ◽  
Peng Dong ◽  
Ying-Jie Zhang ◽  
Xi-Kun Yang ◽  
Shu-Biao Xia ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were modified by hydrogen fluoride (HF) in a simple method. With the help of fluorine, Pd nanoparticles (3.9[Formula: see text]nm) synthesized by a one-step photochemical reduction were uniformly self-assembled on the active sites of functionalized MWCNTs and a new catalyst (Pd/HF-MWCNT) was obtained. UV–Vis absorption spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used. The results demonstrated that –F groups were introduced onto the surface of MWCNTs and C–F chemical bonds were formed. In addition, the electronic structure of Pd was changed. Pd–F coordination bond maybe formed between F atom and Pd atom. Cyclic voltammetry and chronoamperometry tests indicated that electro-catalytic activity of Pd/HF-MWCNTs catalyst for methanol in alkaline medium was about 1.6 times higher than that of the commercial Pd/C (JM) catalyst at the same condition. This new functionalized method has the advantages of simple step and safe operation. It is very significant to improve the wide application of MWCNTs and the commercial development of direct methanol fuel cells (DMFCs).


2020 ◽  
Author(s):  
Renuka Singh ◽  
Shukla Majhi ◽  
Keshav Sharma ◽  
Mohd. Ali ◽  
Chandra Shekhar Pati Tripathi ◽  
...  

<p>In this work, we present a simple method for the synthesis of metal ions stabilized on dopamine modified iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@DA@M<sup>x+</sup>) and their catalytic applications in important organic transformation reactions. Two different metal ions (Cu<sup>+1</sup> and Ru<sup>2+</sup>) are studied in this work. It is observed that both synthesized Fe<sub>3</sub>O<sub>4</sub>@DA@Cu<sup>+ </sup>and Fe<sub>3</sub>O<sub>4</sub>@DA@Ru<sup>2+ </sup>can effortlessly be separated from the reaction medium by positioning an external magnetic field. Dopamine, which is used as an anchor between Fe<sub>3</sub>O<sub>4</sub> and metal ions, increases the solubility of catalyst in reaction medium and prevents leaching of metal ions from the catalyst surface. Here Fe<sub>3</sub>O<sub>4</sub>@DA@Cu<sup>+ </sup>is used in the synthesis of 1,2,3-triazole derivatives via azide-alkyne cycloaddition reactions and Fe<sub>3</sub>O<sub>4</sub>@DA@Ru<sup>2+ </sup>is used for transfer hydrogenation reaction of various aryl ketones. The Fe<sub>3</sub>O<sub>4</sub>@DA@M<sup>x+</sup> nanocomposite is characterized via powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic absorption spectroscopy (AAS), thermogravimetric analysis (TGA) and vibrating-sample magnetometer (VSM). The Fe<sub>3</sub>O<sub>4</sub>@DA@M<sup>x+</sup> catalytic systems can be reused in the reaction mixture up to five times without significant loss in their catalytic activity.</p>


Sign in / Sign up

Export Citation Format

Share Document