scholarly journals Assessment of Graphene Oxide and Nanoclay Based Hybrid Filler in Chlorobutyl-Natural Rubber Blend for Advanced Gas Barrier Applications

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1098
Author(s):  
Jibin Keloth Paduvilan ◽  
Prajitha Velayudhan ◽  
Ashin Amanulla ◽  
Hanna Joseph Maria ◽  
Allisson Saiter-Fourcin ◽  
...  

Nanomaterials have engaged response from the scientific world in recent decades due to their exceptional physical and chemical properties counter to their bulk. They have been widely used in a polymer matrix to improve mechanical, thermal, barrier, electronic and chemical properties. In rubber nanocomposites, nanofillers dispersion and the interfacial adhesion between polymer and fillers influences the composites factual properties. In the present work, a comparison of the hybrid effects of carbon black with two different nanofillers (graphene oxide and nanoclay) was studied. The 70/30 composition of chlorobutyl rubber/natural rubber elastomer blend was taken as per the blend composition optimized from our previous studies. The hybrid effects of graphene oxide and nanoclay in dispersing the nanofillers were studied mainly by analyzing nanocomposite barrier properties. The results confirm that the combined effect of carbon black with graphene oxide and nanoclay could create hybrid effects in decreasing the gas permeability. The prepared nanocomposites which partially replace the expensive chlorobutyl rubber can be used for tyre inner liner application. Additionally, the reduction in the amount of carbon black in the nanocomposite can be an added advantage of considering the environmental and economic factors.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shijiao Zhao ◽  
Jingtao Ma ◽  
Rui Xu ◽  
Xuping Lin ◽  
Xing Cheng ◽  
...  

AbstractZirconium compounds has been widely attention over the last decades due to its excellent physical and chemical properties. Zirconium nitride nanopowders were synthesized via a simple direct carbothermic nitridation process of internal gel derived zirconia in the presence of nano-sized carbon black. The effects of reaction temperature, dwell time and molar ratio of carbon black to Zr (C/Zr) on the phase composition, grain size and crystal parameters of products were studied. Based upon the analysis of crystallite phase evolution and microstructure characterization, it was found that zirconium oxynitride is intermediate product and then O atoms in oxynitride were extracted by oxygen getter, carbon black. Anion sites were directly replaced by N atoms to form rock-salt type nitride in carbothermic nitridation process.


2021 ◽  
Author(s):  
Xudong Zheng ◽  
Wen Sun ◽  
Ang Li ◽  
Bin Wang ◽  
Rong Jiang ◽  
...  

Abstract Because of dysprosium's unique physical and chemical properties and limited supply, the price of rare earth dysprosium has been high in recent years. Therefore, the study of the method of high efficiency selective separation of dysprosium has the double value of scientific research and practical economy. In this paper, we used periodic cellulose nanocrystals as the basic structure, polyethylenimine and graphene oxide were introduced, combined with imprinting technology, to construct porous imprinted aerogel and use it for selective adsorption of Dy(III). The physical and chemical properties were characterized by SEM, TEM, FT-IR and TGA. It was proved that both polyethylenimine and graphene oxide were crosslinked effectively with cellulose nanocrystals. Adsorption experiments showed that the composite imprinted aerogel could selectively adsorb dysprosium effectively, and the maximum adsorption capacity for Dy(III) was 36.495 mg g− 1. The reproducibility experiment showed that aerogel had good regeneration ability. In conclusion, cellulose nanocrystals aerogel, which is environmentally friendly, efficient and repeatable, is expected to provide a new direction for the recovery of rare earth elements.


RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3597-3604 ◽  
Author(s):  
Yu Yang ◽  
Liang Chen ◽  
De-Yuan Li ◽  
Ruo-Bing Yi ◽  
Jia-Wei Mo ◽  
...  

The oxygen content of graphene oxide (GO) is directly related to its physical and chemical properties, such as hydrophilicity, suspension stability, adsorption, and ion-sieving ability of GO membranes.


2016 ◽  
Vol 852 ◽  
pp. 714-719
Author(s):  
Yu Xiang ◽  
Li Bin Liu ◽  
Zhao Dang ◽  
Ting Li

Graphene, a typical two-dimensional planar monolayer of sp2carbon atoms, has attracted significant attention due to its outstanding physical and chemical properties. Nowadays, many graphene-based composites have been synthesized. Among them, graphene hydrogels (including graphene oxide hydrogel and reduced graphene oxide hydrogel) as a kind of graphene-based composites have a wide application prospect. In this paper, the progresses of graphene-based hydrogels are reviewed, and the prospects for the development of graphene-based hydrogels are also discussed.


RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53362-53372 ◽  
Author(s):  
Yani Gong ◽  
Chengbing Qin ◽  
Wenjun He ◽  
Zhixing Qiao ◽  
Guofeng Zhang ◽  
...  

Graphene oxide (GO) with unique physical and chemical properties, such as high specific surface area, chemical stability and environmental friendliness, has been considered as an excellent adsorbent to remove organic dyes from polluted water.


2021 ◽  
Author(s):  
Xudong Zheng ◽  
Wen Sun ◽  
Ang Li ◽  
Bin Wang ◽  
Rong Jiang ◽  
...  

Abstract Because of dysprosium's unique physical and chemical properties and limited supply, the price of rare earth dysprosium has been high in recent years. Therefore, the study of the method of high efficiency selective separation of dysprosium has the double value of scientific research and practical economy. In this paper, we used periodic cellulose nanocrystals as the basic structure, polyethylenimine and graphene oxide were introduced, combined with imprinting technology, to construct porous imprinted aerogel and use it for selective adsorption of Dy(III). The physical and chemical properties were characterized by SEM, TEM, FT-IR and TGA. It was proved that both polyethylenimine and graphene oxide were crosslinked effectively with cellulose nanocrystals. Adsorption experiments showed that the composite imprinted aerogel could selectively adsorb dysprosium effectively, and the maximum adsorption capacity for Dy(III) was 39.027 mg g− 1. The reproducibility experiment showed that aerogel had good regeneration ability. In conclusion, cellulose nanocrystals aerogel, which is environmentally friendly, efficient and repeatable, is expected to provide a new direction for the recovery of rare earth elements.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 551
Author(s):  
Mariana C. F. Costa ◽  
Valeria S. Marangoni ◽  
Pei Rou Ng ◽  
Hang T. L. Nguyen ◽  
Alexandra Carvalho ◽  
...  

Graphene oxide (GO) is an oxygenated functionalized form of graphene that has received considerable attention because of its unique physical and chemical properties that are suitable for a large number of industrial applications. Herein, GO is rapidly obtained directly from the oxidation of graphene using an environmentally friendly modified Hummers method. As the starting material consists of graphene flakes, intercalant agents are not needed and the oxidation reaction is enhanced, leading to orders of magnitude reduction in the reaction time compared to the conventional methods of graphite oxidation. With a superior surface area, the graphene flakes are quickly and more homogeneously oxidized since the flakes are exposed at the same extension to the chemical agents, excluding the necessity of sonication to separate the stacked layers of graphite. This strategy shows an alternative approach to quickly producing GO with different degrees of oxidation that can be potentially used in distinct areas ranging from biomedical to energy storage applications.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3340 ◽  
Author(s):  
Xiaoning Zhang ◽  
Zhenyu Chen ◽  
Hong Bao ◽  
Jianwei Liang ◽  
Shui Xu ◽  
...  

In the present work, a sustained-release film composed of silk fibroin (SF), curcumin (Cur), glutaraldehyde (GA), and glycerol (Gly) was prepared successfully for wound dressings. Features relevant to wound dressings of SF/Gly/GA/Cur film were assessed. Physical and chemical properties of the fabricated materials were also characterized. The results showed that the prepared SF/Gly/GA/Cur film demonstrated a good sustained-release performance, flexibility, and gas permeability. In addition, it was found that the prepared SF/Gly/GA/Cur film possessed the capability to effectively inhibit the growth of bacteria and prevent bacterial penetration with a suitable water vapor transmission rate. Furthermore, the prepared composite film was non-cytotoxic, which makes it an ideal material for wound dressings.


2014 ◽  
Vol 2 (34) ◽  
pp. 13772-13782 ◽  
Author(s):  
Hubiao Huang ◽  
Yulong Ying ◽  
Xinsheng Peng

Due to their unique physical and chemical properties, graphene oxide nanosheets represent an emerging star material for novel separation membranes.


Sign in / Sign up

Export Citation Format

Share Document