scholarly journals Experimental, Theoretical and Simulation Studies on the Thermal Behavior of PLA-Based Nanocomposites Reinforced with Different Carbonaceous Fillers

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1511
Author(s):  
Giovanni Spinelli ◽  
Rosella Guarini ◽  
Rumiana Kotsilkova ◽  
Evgeni Ivanov ◽  
Vittorio Romano

Many research efforts have been directed towards enhancing the thermal properties of polymers, since they are classically regarded as thermal insulators. To this end, the present study focuses on the thermal investigation of poly(lactic acid) (PLA) filled with two types of carbon nanotubes (trade names: TNIMH4 and N7000), two type of graphene nanoplatelets (trade names: TNIGNP and TNGNP), or their appropriate combination. A significant increase in the thermal conductivity by 254% with respect to that of unfilled polymer was achieved in the best case by using 9 wt% TNIGNP, resulting from its favorable arrangement and the lower thermal boundary resistance between the two phases, matrix and filler. To theoretically assist the design of such advanced nanocomposites, Design of Experiments (DoE) and Response Surface Method (RSM) were employed, respectively, to obtain information on the conditioning effect of each filler loading on the thermal conductivity and to find an analytical relationship between them. The numerical results were compared with the experimental data in order to confirm the reliability of the prediction. Finally, a simulation study was carried out with Comsol Multiphysics® for a comparative study between two heat sinks based on pure PLA, and to determine the best thermally performing nanocomposite with a view towards potential use in heat transfer applications.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Mou’ad A. Tarawneh ◽  
Dalila Shahdan ◽  
Sahrim Hj Ahmad

The mechanical and conductivity of magnetic polymer nanocomposite (MPNC) of nickel zinc (NiZn) ferrite nanoparticles incorporated with poly(lactic acid) (PLA) and liquid natural rubber (LNR) as compatibilizer is reported. The matrix was prepared from PLA and LNR in the ratio of 90 : 10. The MPNC of PLA/LNR/NiZn ferrite then was prepared via Thermo Haake internal mixer using melt-blending method from different filler loading from 1–5 wt% NiZn ferrite. The result of tensile tests showed that as the filler loading increases, the tensile strength also increases until an optimum value of filler loading was reached. Young’s modulus, tensile strength, and elongation at break have also increased. The study proves that NiZn ferrite is an excellent reinforcement filler in PLA/LNR matrix. The optimum thermal conductivity of PLA/LNR composites achieved with (4 wt% NiZn) due to the effective combination of NiZn-NiZn conductive networks. The scanning electron micrograph (SEM) reveal that the aspect ratio and filler orientation in the PLA/LNR matrix also strongly promoted interfacial adhesion between the filler and the matrix to control its properties.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1721
Author(s):  
Mario Mora ◽  
Hippolyte Amaveda ◽  
Luis Porta-Velilla ◽  
Germán F. de la Fuente ◽  
Elena Martínez ◽  
...  

The objective of this work is the enhancement of metal-to-metal bonding to provide high thermal conductivity together with electrical insulation, to be used as heat sinks at room and cryogenic temperatures. High thermal conductive metal (copper) and epoxy resin (Stycast 2850FT) were used in this study, with the latter also providing the required electrical insulation. The copper surface was irradiated with laser to induce micro- and nano-patterned structures that result in an improvement of the adhesion between the epoxy and the copper. Thus, copper-to-copper bonding strength was characterized by means of mechanical tensile shear tests. The effect of the laser processing on the thermal conductivity properties of the Cu/epoxy/Cu joint at different temperatures, from 10 to 300 K, is also reported. Using adequate laser parameters, it is possible to obtain high bonding strength values limited by cohesive epoxy fracture, together with good thermal conductivity at ambient and cryogenic temperatures.


Heat sinks or fins stand deployed for enhancing heat transfer. That’s why, planned experiments remain fortified for examining the impacts of SSF pin fin on thermal dispersal concerning constant thermal value 6 W/cm2 . For that five chromel-alumel thermocouples are preferred, above and beyond, SSF pin fins materials of stainless steel and aluminum. As anticipated, for both the stated SSF pin fins, temperature declines for increasing length scale. Besides, both results are comparable with each other. However, temperature distributions over SSF aluminum pin fin declines relatively at faster rate comparable to that over SSF stainless steel pin fin. Obviously, it may be owing to higher thermal conductivity of SSF aluminum pin fin. Therefore, it carries superior, pleasant and momentous thermal performances.


2018 ◽  
Vol 52 (2) ◽  
pp. 025103 ◽  
Author(s):  
J Oliva ◽  
A I Mtz-Enriquez ◽  
A I Oliva ◽  
R Ochoa-Valiente ◽  
C R Garcia ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Han Su ◽  
Cherng-Yuh Su ◽  
Cheng-Ta Cho ◽  
Chung-Hsuan Lin ◽  
Guan-Fu Jhou ◽  
...  

Abstract The issue of electronic heat dissipation has received much attention in recent times and has become one of the key factors in electronic components such as circuit boards. Therefore, designing of materials with good thermal conductivity is vital. In this work, a thermally conductive SBP/PU composite was prepared wherein the spherical h-BN@PMMA (SBP) composite powders were dispersed in the polyurethane (PU) matrix. The thermal conductivity of SBP was found to be significantly higher than that of the pure h-BN/PU composite at the same h-BN filler loading. The SBP/PU composite can reach a high thermal conductivity of 7.3 Wm−1 K−1 which is twice as high as that of pure h-BN/PU composite without surface treatment in the same condition. This enhancement in the property can be attributed to the uniform dispersion of SBP in the PU polymer matrix that leads to a three-dimensional continuous heat conduction thereby improving the heat diffusion of the entire composite. Hence, we provide a valuable method for preparing a 3-dimensional heat flow path in polyurethane composite, leading to a high thermal conductivity with a small amount of filler.


Author(s):  
F. Reyhaneh Mehdizadeh ◽  
Daryoush Nazarpour

The paper presents the potential use of supplemental control of a new economical phase imbalanced shunt compensation concept for damping sub synchronous resonance (SSR) oscillations. In this scheme, the shunt capacitive compensation in one phase is created by using a Single-Phase Static Synchronous Compensator (STATCOM) in parallel with a fixed capacitor (Cc), and the other two phases are compensated by fixed shunt capacitor (C). The proposed arrangement would, certainly, be economically attractive when compared with a full three-phase STATCOM which have been used/proposed for power swings and SSR damping. SSR mitigation is achieved by introducing a supplemental signal into the control loops of single phase STATCOM. The validity and effectiveness of the proposed structure and supplemental control are demonstrated on a modified version of the IEEE second benchmark model for computer simulation of sub synchronous resonance by means of time domain simulation analysis using the Matlab program.


1999 ◽  
Vol 123 (3) ◽  
pp. 315-318 ◽  
Author(s):  
Keiji Sasao ◽  
Mitsuru Honma ◽  
Atsuo Nishihara ◽  
Takayuki Atarashi

A numerical method for simulating impinging air flow and heat transfer in plate-fin type heat sinks has been developed. In this method, all the fins of an individual heat sink and the air between them are replaced with a single, uniform element having an appropriate flow resistance and thermal conductivity. With this element, fine calculation meshes adapted to the shape of the actual heat sink are not needed, so the size of the calculation mesh is much smaller than that of conventional methods.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Elwassif ◽  
A. Datta ◽  
M. Bikson

There is a growing interest in the use of Deep Brain Stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or magnetic coupling (e.g., MRI) remain poorly understood, and methods to mitigate temperature increases are actively investigated. Indeed, brain function is especially sensitive to the changes in temperature including neuronal activity, metabolic functions, blood-brain barrier integrity, molecular stability, and viability. We developed technology to control tissue heating near DBS leads by modifying the thermal properties of lead materials. A micro-thermocouple was used to measure the temperature near DBS electrodes immersed in a saline bath. 3387 and 3389 Leads were energized using Medtronic DBS stimulators. The RMS of the driving voltage was monitored. Peak steady-state temperature was determined under different RMS values. A micro-positioning system was used, which allowed the generation of temperature field map. We developed and solved a finite element method (FEM) bio-heat transfer model of DBS incorporating realistic DBS lead architecture. The model was first validated using the experimental results (by matching saline thermal conductivity and electrical conductivity) and was then applied to develop methods to control temperature rises in the brain using heat-sink technology. Experimental measurements are consistent with theoretical predictions including: 1) Peak temperature increases directly with the RMS square of the applied voltage, such that different waveforms with the same RMS induce the same peak temperature rise; 2) Peak temperatures increases with contact proximity such the maximal temperature rise was observed using adjacent contacts of lead 3389; 3) Temperature decayed over ∼2 mm distance away from energized contacts. FEM results demonstrated the central role of lead materials (material properties and geometry) in controlling temperature rise by conducting heat: namely by acting as passive heat sinks. We report that the relatively high thermal conductivity of exiting DBS lead wiring affects the temperature field, indicating the importance of detailed lead architecture. We then demonstrate how modifying lead design to optimize heat conduction can effectively control temperature increases; the manifest advantages of this approach over complimentary heat-mitigation technologies is that heat-sink controls include: 1) insensitive to the mechanisms of heating (e.g., nature of magnetic coupling); 2) does not interfere with device efficacy (e.g., the electric fields induced in the tissue during stimulation are unaffected); and 3) can be practically implemented in a broad range of implanted devices (cardiac/neuro-prothethics, pumps...) without modifying device operation or implant procedure.


Sign in / Sign up

Export Citation Format

Share Document