A Novel Green Biogenic Synthesis of Silver Nanoparticles using Tabebuia rosea (Bertol.) DC Fruit Extract and Its Antioxidant and Antibacterial Potential

Author(s):  
Dr. Guru Kumar Dugganaboyana ◽  
Ramya Jayendra ◽  
Arpitha Narayan ◽  
Meghana Siddappa Konasur

Plant based synthesis of nanoparticles has generated worldwide interest because of cost-effectiveness, eco-friendly nature and abundance of applications. In the present investigation , antimicrobial potential of silver nanoparticles (AgNPs) of aqueous extract of Tabebuia rosea (Bertol.) DC (T. rosea) fruit extract has been investigated. Agar disc diffusion method was used for determining the antimicrobial activity of selected aqueous fruit extract AgNPs. Phytochemical analysis of aqueous fruit extract of T. rosea fruit revealed the presence of alkaloids, flavonoids, tannins, phenols, carbohydrates, glycosides, Vitamin-C, proteins and terpenoids. AgNPs synthesis using T. rosea aqueous fruit extract and characterized by UV-Visible spectroscopy showed a peak at 420 nm and average size of 82.9 nm, FT-IR analysis, dynamic light scattering, scanning electron microscope, EDX and X-ray diffraction analysis. Evaluation of antibacterial activity of green synthesized AgNPs recorded the more potent activity against selected human bacterial pathogens. The results obtained indicated that the fruit extract of T. rosea as well as AgNPs have strong and effective antibacterial potential that provide marvelous source for the development of new drug molecules of herbal origin which may be used for the welfare of humanity.

2019 ◽  
Vol 9 (1-s) ◽  
pp. 196-200
Author(s):  
G Amalorpavamary ◽  
G Dineshkumar ◽  
K Jayaseelan

In recent times, plant-mediated synthesis of nanoparticles has garnered wide interest owing to its inherent features such as rapidity, simplicity, eco-friendliness and cheaper costs. For the first time, silver nanoparticles were successfully synthesized using Phyllanthus niruri leaf extract in the current investigation. The silver nanoparticles were characterized by UV–Vis spectrophotometer and the characteristic surface plasmon resonance peak was identified to be 423 nm. The morphology of the silver nanoparticles was characterized by scanning electron microscopy (SEM). The size of the silver nanoparticles was found to be 10-50 nm, with an average size 15 nm.  FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. The antibacterial potential of synthesized AgNPs was compared with that of aqueous extracts of P.niruri by well diffusion method. The AgNPs at 50µl concentration significantly inhibited bacterial growth against A.hydrophila (16 ± 0.09 mm). Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future. Keywords: Phyllanthus niruri, AgNps, Aeromonas hydrophila, Antibacterial Activity.


Author(s):  
S C Joshi ◽  
Utkarsh Kaushik ◽  
Aproova Upadhyaya ◽  
Priyanka Sharma

ABSTRACTObjective: The synthesis of nanoparticles from biological processes is evolving a new era of research interests in nanotechnology. Silver nanoparticlesare usually synthesized by chemicals and physical method, which are quite toxic and flammable in nature. This study deals with an environmentfriendly biosynthesis process of antibacterial silver nanoparticles using Momordica charantia fruit.Methods: AgNO3 (5 mM) was allowed to react with fruit extract of M. charantia. Biosynthesis of AgNPs was optimized by changing temperature,pH, and solvent. The silver nanoparticles so formed were characterized using ultraviolet-visible (UV-VIS) spectroscopy, Fourier transform infraredspectroscopy (FTIR), dynamic light scattering (DLS), atomic force microscope (AFM), and scanning electron microscopy (SEM).Results: UV-VIS spectra show absorption peak between 420 and 430 nm. The FTIR analysis showed the alcoholic, lactam, and nitro group presentin the plant extract, which were responsible for the reduction in AgNPs. The SEM images showed the size distribution of the nanoparticles and theaverage size was found to be 50-100 nm. By DLS analysis and AFM analysis, average sizes of the silver nanoparticles were of 150 nm. The results ofthese analyses confirmed the formation of silver nanoparticles. Silver nanoparticles were tested against Bacillus cereus and Staphylococcus epidermidisstrains using disc diffusion method and were found to be effective.Conclusion: Silver nanoparticles so synthesized in this study using fruit extract of M. charantia are simple, easy, and effective technique of nanoparticlesproduction.Keywords: Silver nanoparticles, Momordica charantia, Optimization, Antibacterial, Atomic force microscope, Scanning electron microscopy.


2021 ◽  
Vol 5 (3) ◽  
pp. 109-122
Author(s):  
Tuğba Kahraman ◽  
Safiye Elif Korcan ◽  
Recep Liman ◽  
İbrahim Hakkı Ciğerci ◽  
Yaser Acikbas ◽  
...  

Abstract Silver nanoparticles (AgNPs) have been used in a variety of biomedical applications in the last two decades, including antimicrobial, anti-inflammatory, and anticancer treatments. The present study highlights the extracellular synthesis of silver nanoparticles AgNPs using Neopestalotiopsis clavispora MH244410.1 and its antibacterial, antibiofilm, and genotoxic properties. Locally isolated N. clavispora MH244410.1 was identified by Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Optimization of synthesized AgNPs was performed by using various parameters (pH (2, 4, 7, 9 and 12), temperature (25, 35 and 45 °C), and substrate concentration (0.05, 0.1, 0.15, 0.2 and 0.25 mM)). After 72 hours of incubation in dark conditions, the best condition for the biosynthesis of AgNPs was determined as 0.25 mM metal concentration at pH 12 and 35 °C. Fungal synthesized AgNPs were characterized via spectroscopic and microscopic techniques such as Fouirer Transform Infrared Spectrophotometer (FTIR), UV-Visible Spectroscopy, and Transmission Electron Microscopy (TEM). The average size of the AgNPs was determined less than 60 nm using the TEM and Zetasizer measurement system (measured in purity water suspension). The characteristic peak of AgNPs was observed at ~414 nm from UV-Vis results. Antibacterial and genotoxic activity of synthesized AgNPs (0.1, 1, and 10 ppm) were also determined by using the agar well diffusion method and in vivo Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. AgNPs exhibited potential antimicrobial activity against all the tested bacteria (Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa) except Escherichia coli in a dose-dependent manner. AgNPs did not induce genotoxicity in the Drosophila SMART assay. 79.33, 65.47, and 41.95% inhibition of biofilms formed by P. aeruginosa were observed at 10, 1, and 0.1 ppm of AgNPs, respectively. The overall results indicate that N. clavispora MH244410.1 is a good candidate for novel applications in biomedical research.


Author(s):  
Mohib Shah ◽  
Natasha Anwar ◽  
Samreen Saleem ◽  
Iqbal Munir ◽  
Niaz Ali Shah ◽  
...  

Background. Nanotechnology is promising field for generating new applications. A green synthesis of nanoparticles through biological methods using plant extract have a reliable and ecofriendly approach to improve our global environment. Methods. Silver nanoparticles (AgNPs) were synthesized using aqueous extract of Anagalis arvensis L and silver nitrate and were physicochemically characterized. Results. The stability of AgNPs toward acidity, alkalinity, salinity and temperature showed that they remained stable at room temperature for more than two months. The SEM and TEM analysis of the AgNPs showed that they have a uniform spherical shape with an average size in the range of 40–78 nm. Further 1-Dibhenyl-2-Picrylhydrazl radical in Anagalis arvensis L.mediated AgNPs showed a maximum activity of 98% at concentration of 200μg/mL. Hydrogen peroxide scavenging assay in Anagalis arvensis L. mediated AgNPs showed a maximum activity of 85% at concentration of 200μg/mL. Reducing power of Anagalis arvensis L.Ag NPs exhibited a higher activity of 330 μg/mL at concentration of 200 μg/mL. These NPs have cytotoxic effects against brine shrimp (Artemia salina) nauplii with a value of 53% LD 178.04μg/mL. Conclusion. The AgNPs synthesized using Anagalis arvensis L. extract demonstrate a broad range of applications.


Author(s):  
A. Sharif ◽  
H. Javed ◽  
A. Ali ◽  
I. Ahmed ◽  
F. N. Khoso

Zanthoxylum alatum (Z. alatum), an important medicinal plant is used for various ailments including chest infection, cough, cholera, fever, stomach disorders, gas problems, indigestion, piles, toothache, gum problems, dyspepsia and stomachic worldwide. Keeping in view the medicinal potential of this plant, fruit and leaves methanolic (MeOH) extracts were prepared, evaluated for antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and for antibacterial potential by well diffusion and macrodilution methods in-vitro. Our results confirmed that Z. alatum fruit and leaves extracts have significant antioxidant activity with IC50 values 0.28 ± 0.07 mg/ml and 0.34 ± 0.05 mg/ml, respectively. The inhibitory trend at highest tested concentration (120 mg/ml) at 24 hr incubation in well diffusion method was recorded as 0.39, 0.30, 0.28, 0.27 and 0.18 cm against S. pyogenes, B. cereus, E. coli, S. aureus and S. enterica for leaf extract, respectively. In case of fruit extract inhibitory trend at highest tested concentration was observed as 0.33, 0.32, 0.31, 0.30 and 0.28 cm against S. aureus, S. enterica, S. pyogenes, B. cereus and E. coli, respectively. The fruit extract showed higher zones of inhibition than leaves extracts against all the test bacteria except S. pyogenes. Moreover, highest zones of inhibition were observed at lowest incubation (24 hr) and lowest zones were observed at highest incubation period (72 hr) for all tested concentrations. Macrodilution method showed antibacterial susceptibility in liquid medium with different levels of IC50 values ranging from 1.6±0.13 mg/ml to 10.3±0.7 5mg/ml. Interestingly, none of the tested bacteria showed resistance against any of the test extract in well diffusion or macrodilution method expressing the Z. alatum as potent candidates to kill bacteria in semisolid or in liquid medium to fulfill medical needs in future.


2021 ◽  
Author(s):  
Shirisha A ◽  
ANUMOLU VIJAYA KUMAR ◽  
Laxman Chatlod R ◽  
Shashi Kumar M ◽  
Krishnaiah N ◽  
...  

Abstract The present study mainly deals with the green synthesis, characterization and evaluation of antibacterial properties of silver nanoparticles (AgNPs) synthesized by using the leaf extract of Moringa oleifera and fruit extract of Tamarindus indica. In this study for synthesis of silver nanoparticles different ratios of 1mM silver nitrate and Moringa oleifera leaf extract i.e, 95:5, 90:10 and 85: 15 was taken in conical flask and kept for one 1 hr at 25 0 c on magnetic stirrer, out of which 90:10 ratio was selected for further study based on highest peak, good size and stability. Tamarindus indica fruit extract was added to silver nitrate solution till the colour of the solution changes from light brown to chocolate brownish colour. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, Zeta potential, size distribution by intensity. The absorption spectrum of the silver nano solution prepared by using Moringa oleifera and Tamarindus indica fruit extract showed a surface plasmon absorption band with maximum of 420 nm and 430 nm respectively indicating the presence of silver nanoparticles. The zeta value of silver nanoparticles synthesized from Moringa oleifera and Tamarindus indica fruit extract was -12.5 mV and -15.5 mV, size of 110.2 nm and 130.2 nm respectively. The antibacterial efficacy of nanosilver was checked by agar well diffusion method, and the silver nanoparticles showed effective antibacterial activity against Staphylococcus aureus.


2018 ◽  
Vol 7 (3) ◽  
pp. 1570
Author(s):  
Nguyen Phung Anh ◽  
Truong Thi Ai Mi ◽  
Duong Huynh Thanh Linh ◽  
Nguyen Thi Thuy Van ◽  
Hoang Tien Cuong ◽  
...  

A rapid way of synthesizing silver nanoparticles (AgNPs) by treating Ag+ ions with a green Fortunella Japonica (F.J.) extract as a combined reducing and stabilizing agent was investigated. The reaction solutions were monitored using UV-Vis spectroscopy, the size and shape of crystals were determined by scanning electron microscopy and transmission electron microscopy, the crystalline phases of AgNPs were presented by X–ray diffraction, and the relation of nanoparticles with Fortunella Japonica extract was confirmed using fourier transform infrared spectroscopy. The results indicated that no formation of AgNPs had taken place in the dark during 24 hours at room temperature and 40 oC. Meanwhile, it was found that the rate of AgNPs formation increased rapidly under the sunlight. The effects of the synthesis factors on the AgNPs formation were investigated. The suitable conditions for the synthesis of AgNPs using F.J. extract were determined as follows: F.J. extract was mixed with AgNO3 1.75 mM solution with the volume ratio of 3.5 AgNO3 solution/1.5 F.J. Extract, stirred 300 rpm for 150 minutes at 40 oC under sunlight illumination. At these conditions, AgNPs showed high crystalline structure with the average size of 15.9 nm. The antibacterial activity of silver nanoparticles was determined by agar well diffusion method against E. coli and B. subtilis bacteria. The green synthesized AgNPs performed high antibacterial activity against both bacteria.  


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1999
Author(s):  
Kaushik Kumar Bharadwaj ◽  
Bijuli Rabha ◽  
Siddhartha Pati ◽  
Bhabesh Kumar Choudhury ◽  
Tanmay Sarkar ◽  
...  

The green synthesis of silver nanoparticles (AgNPs) has currently been gaining wide applications in the medical field of nanomedicine. Green synthesis is one of the most effective procedures for the production of AgNPs. The Diospyros malabarica tree grown throughout India has been reported to have antioxidant and various therapeutic applications. In the context of this, we have investigated the fruit of Diospyros malabarica for the potential of forming AgNPs and analyzed its antibacterial and anticancer activity. We have developed a rapid, single-step, cost-effective and eco-friendly method for the synthesis of AgNPs using Diospyros malabarica aqueous fruit extract at room temperature. The AgNPs began to form just after the reaction was initiated. The formation and characterization of AgNPs were confirmed by UV-Vis spectrophotometry, XRD, FTIR, DLS, Zeta potential, FESEM, EDX, TEM and photoluminescence (PL) methods. The average size of AgNPs, in accordance with TEM results, was found to be 17.4 nm. The antibacterial activity of the silver nanoparticles against pathogenic microorganism strains of Staphylococcus aureus and Escherichia coli was confirmed by the well diffusion method and was found to inhibit the growth of the bacteria with an average zone of inhibition size of (8.4 ± 0.3 mm and 12.1 ± 0.5 mm) and (6.1 ± 0.7 mm and 13.1 ± 0.5 mm) at 500 and 1000 µg/mL concentrations of AgNPs, respectively. The anticancer effect of the AgNPs was confirmed by MTT assay using the U87-MG (human primary glioblastoma) cell line. The IC50 value was found to be 58.63 ± 5.74 μg/mL. The results showed that green synthesized AgNPs exhibited significant antimicrobial and anticancer potency. In addition, nitrophenols, which are regarded as priority pollutants by the United States Environmental Protection Agency (USEPA), can also be catalytically reduced to less toxic aminophenols by utilizing synthesized AgNPs. As a model reaction, AgNPs are employed as a catalyst in the reduction of 4-nitrophenol to 4-aminophenol, which is an intermediate for numerous analgesics and antipyretic drugs. Thus, the study is expected to help immensely in the pharmaceutical industries in developing antimicrobial drugs and/or as an anticancer drug, as well as in the cosmetic and food industries.


2020 ◽  
Vol 9 (1) ◽  
pp. 503-514 ◽  
Author(s):  
Khaleeq Uz-Zaman ◽  
Jehan Bakht ◽  
Bates Kudaibergenova Malikovna ◽  
Eman R. Elsharkawy ◽  
Anees Ahmed Khalil ◽  
...  

AbstractSynthesis of nanoparticles is a fast-growing area of interest in the current development in science and technology. Nanoparticles are also used in biomedical applications. Green synthesis of nanoparticles is an environmental friendly and cost-effective technique. Trillium govanianum Wall. Ex. Royle crude extract was used for the eco-friendly genesis of silver nanoparticles (AgNPs). Aromatic amines were the functional groups involved in the bio-fabrication and synthesis of the AgNPs. The production of AgNPs was established by the appearance of brown color. The manufactured AgNPs were characterized by UV-Vis spectrophotometer, X-ray diffractometer, and FTIR spectrophotometer. AgNPs were face-centered cubic in nature with an average size of 9.99 nm. The produced AgNPs (18 µL disc−1) showed substantial antibacterial (53.74, 52.75, 51.61, 43.00, 36.84, and 36.84%) and antifungal (54.05, 42.11, 41.10, 40.85, 30.55, and 29.73%) potential against the tested bacterial (X. campestris, P. aeruginosa, S. aureus, E. coli, B. subtilis, and K. pneumoniae) and fungal (A. alternaria, Paecilomyces, C. albicans, Curvularia, A. niger, and Rhizopus) strains, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1045
Author(s):  
Majid Sharifi-Rad ◽  
Pawel Pohl ◽  
Francesco Epifano

In the last years, the plant-mediated synthesis of nanoparticles has been extensively researched as an affordable and eco-friendly method. The current study confirms for the first time the capability of the Otostegia persica (Burm.) Boiss. leaf extract for the synthesis of silver nanoparticles (AgNPs). The phytofabricated AgNPs were characterized by ultraviolet–visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and zeta potential analysis. Moreover, the total phenolic and flavonoids contents, and the antioxidant, antibacterial, antifungal, and anti-inflammatory properties of the phytofabricated AgNPs and the O. persica leaf extract were assessed. The results showed that the produced AgNPs were crystalline in nature and spherical in shape with an average size of 36.5 ± 2.0 nm, and indicated a localized surface plasmon resonance (LSPR) peak at around 420 nm. The zeta potential value of −25.2 mV pointed that the AgNPs were stable. The phytofabricated AgNPs had lower total phenolic and flavonoids contents than those for the O. persica leaf extract. The abovementioned AgNPs showed a higher antioxidant activity as compared with the O. persica leaf extract. They also exhibited significant antibacterial activity against both Gram-positive (Staphylococcus aureus, Bacillus subtilis, and Streptococcus pyogenes) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi) bacteria. In addition, appropriate antifungal effects with the minimum inhibitory concentration (MIC) values of 18.75, 37.5, and 75 µg mL−1 against Candida krusei, Candida glabrata, and Candida albicans, respectively, were noted for this new bionanomaterial. Finally, the phytofabricated AgNPs showed dose-dependent anti-inflammatory activity in the human red blood cell (RBC) membrane stabilization test, being higher than that for the O. persica leaf extract. The resulting phytofabricated AgNPs could be used as a promising antioxidant, antibacterial, antifungal, and anti-inflammatory agent in the treatments of many medical complications.


Sign in / Sign up

Export Citation Format

Share Document