scholarly journals Using Gold-Nanorod-Filled Mesoporous Silica Nanobeads for Enhanced Radiotherapy of Oral Squamous Carcinoma

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2235
Author(s):  
Mei-Hsiu Chen ◽  
Ming-Hong Chen ◽  
Chia-Ying Li ◽  
Fu-I Tung ◽  
San-Yuan Chen ◽  
...  

Radiotherapy (RT), in combination with surgery, is an essential treatment strategy for oral cancer. Although irradiation provides effective control over tumor growth, the surrounding normal tissues are almost inevitably affected. With further understanding of the molecular mechanisms involved in radiation response and recent advances in nanotechnology, using gold nanoparticles as a radiosensitizer provides the preferential sensitization of tumor cells to radiation and minimizes normal tissue damage. Herein, we developed gold nano-sesame-beads (GNSbs), a gold-nanorod-seeded mesoporous silica nanoparticle, as a novel radioenhancer to achieve radiotherapy with a higher therapeutic index. GNSbs in combination with 2 Gy irradiation effectively enhanced the cytotoxic activity CAL-27 cells. The well-designed structure of GNSbs showed preferential cellular uptake by CAL-27 cells at 24 h after incubation. Gold nanorods with high density modified on mesoporous silica nanoparticles resulted in significant reactive oxygen species (ROS) formation after irradiation exposure compared with irradiation alone. Furthermore, GNSbs and irradiation induced more prominent DNA double-strand breaks and G2/M phase arrest in CAL-27 than those in L929. In animal studies, radiotherapy using GNSbs as a radiosensitizer showed significant suppression of tumor growth in an orthotopic model of oral cancer. These results demonstrate that using GNSbs as a radiosensitizer could possess clinical potential for the treatment of oral squamous carcinoma.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Piyawat Tangsuksan ◽  
Jureeporn Chuerduangphui ◽  
Chutha Takahashi Yupanqui ◽  
Teerapol Srichana ◽  
Ekarat Hitakomate ◽  
...  

Abstract Background Oral cancer is often preceded by a mucosal lesion called an oral potentially malignant disorder (OPMD). Many plant-derived compounds are of value in medicine. The objectives of this study were to develop a soluble mucoadhesive film containing α-mangostin (α-MG), a compound extracted from the peel of mangosteen fruit, and determine its activities against oral cancer cells, against human papillomavirus type 16 (HPV-16) pseudovirus, and its anti-inflammatory properties. Methods A soluble mucoadhesive film containing α-MG was prepared. Oral squamous carcinoma cell line (SCC25), murine macrophage cells (RAW264.7), and human gingival fibroblast cell line were cultured. Anticancer activity and viability of SCC25 cells in response to α-MG film solution were determined by MTT assay. HPV-16 pseudovirus was constructed and effects of the film solution on attachment and post-attachment steps of the infection were investigated. Anti-inflammatory activity was assessed by nitric oxide (NO) inhibition. Fibroblast cell migration was determined by in vitro scratch assay. Results The soluble α-MG film showed cytotoxic effects on SCC25 cells in concentration > 125 µg/ml with IC50 of 152.5 µg/ml. Antiviral activity against HPV-16 pseudovirus was observed at attachment step, but not at post-attachment step. The film also possessed a strong anti-inflammatory effect and promoted wound healing without cytotoxicity. Conclusions Mucoadhesive film containing α-MG has a cytotoxic effect on oral squamous carcinoma cell line and an inhibitory effect on HPV-16 pseudovirus at attachment step. The α-MG film also shows a potent anti-inflammatory activity and enhances wound healing. Thus, the soluble α-MG film may have a potential role in treating oral cancer.


2020 ◽  
Vol 16 (5) ◽  
pp. 652-658
Author(s):  
Jianze Wang ◽  
Zhiguo Lu ◽  
Jie Shen ◽  
Huan Peng ◽  
Tianlu Zhang ◽  
...  

Fragrances are extensively applied in food, daily chemicals, tobacco and medicine industries. However, too strong volatility of fragrances results in a fast release rate, thereby reducing the usage time of aromatherapy products. Although loading fragrances into nanomaterials is capable of slowing their rates of release, the encapsulation efficiency of traditional nanomaterials is very low, and the nanomaterials themselves are not stable. Herein, hollow mesoporous silica nanoparticles (hMSNs) were designed for encapsulation of eugenol and the nano-fragrance was named EG@hMSNs. The structure of hMSNs was stable and the encapsulation rate of eugenol reached 46.5%. Besides, EG@hMSNs could significantly slow the release rate of eugenol. Subsequently, the EG@hMSNs were testified that they had positive roles in stress relief by open field tests. The molecular mechanisms of these positive effects on the central nervous system were then explored. Furthermore, the preparation method of hMSCs was simple, and the preparation cost was low. Therefore, EG@hMSNs are expected to be industrially produced and have a great application prospect.


2018 ◽  
Vol 6 (48) ◽  
pp. 8078-8084 ◽  
Author(s):  
Xinyu Cui ◽  
Wenlong Cheng ◽  
Xiaojun Han

We coupled the photothermal and thermoresponsive properties in one nanoplatform by wrapping AuNRs@mSiO2 with thermoresponsive lipid bilayer.


Drug Research ◽  
2018 ◽  
Vol 68 (09) ◽  
pp. 504-513
Author(s):  
Hamidreza Manjili ◽  
Leila Ma’mani ◽  
Hossein Naderi-Manesh

Sulforaphane (SF) was loaded into the multi-functioned rattle-structured gold nanorod mesoporous silica nanoparticles core-shell to improve its stability and efficacy through its efficient delivery to tumors. The rattle-structured gold nanorod mesoporous silica nanoparticles (rattle-structured AuNR@mSiO2 core-shell NPs) were obtained by covering the surface of Au NPs with Ag and mSiO2 shell and subsequently selective Ag shell etching strategy. Then the surface of rattle-structured AuNR@mSiO2 NPs was decorated with thiolated polyethylene glycol-FITC and thiolated polyethylene glycol-folic acid to the designed form. The obtained FITC/FA@ [rattle-structured AuNR@mSiO2] NPs was characterized by different techniques including energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM & TEM), UV-visible spectrophotometer and dynamic light scattering (DLS). The FITC/FA@ [rattle-structured AuNR@mSiO2] NPs has an average diameter around ~33 nm, which increases to ~38 nm after the loading of sulforaphane. The amount of the loaded drug was ~ 2.8×10-4 mol of SF per gram of FITC/FA@ [rattle-structured AuNR@mSiO2] NPs. The rattle-structured AuNR@mSiO2 and FITC/FA@ [rattle-structured AuNR@mSiO2] NPs showed little inherent cytotoxicity, whereas the SF loaded FITC/FA@ [rattle-structured AuNR@mSiO2] NPs was highly cytotoxic in the case of MCF-7 cell line. Finally, Fluorescence microscopy and flow cytometry were used to demonstrate that the nanoparticles could be accumulated in specific regions and SF loaded FITC/FA@ [Fe3O4@Au] NPs efficiently induce apoptosis in MCF-7 cell line Graphical Abstract.


Author(s):  
V. A. Muralidharan ◽  
R. V. Geetha

Introduction: Trifolium pratense also known as the red clover is widely distributed in the tropics and in the subtropical regions. It is generally consumed in the form of tea by the northern states of India and some tribal people of Nepal and Bhutan. Studies reveal that it is rich in antioxidant and anti-inflammatory activity. It is due to the presence of unique isoflavones found in Trifolium pratense are Biohanin A and formononetin. Aim: The main aim of the study is to find out whether Trifolium pratense extract has antiproliferative activity against oral squamous carcinoma cells. Materials and Methods: The  dried buds of Trifolium pratense flowers  were purchased commercially and then powdered  Then MTT assays  was carried out to find out it’s inhibitory activity against oral carcinoma cells Results and Discussion: From the assay it is evident that it shows a potent inhibitory activity against oral squamous carcinoma cells. Linear regression analysis revealed that the IC50 was found to be at 53.13µg/ml which is higher than that of other species of this family. Conclusion: From the above study it is evident that Trifolium pratense has a very good inhibitory activity and hence can be used in the treatment of oral cancer.


Sign in / Sign up

Export Citation Format

Share Document