scholarly journals Flexible Fiber Membrane Based on Carbon Nanotube and Polyurethane with High Thermal Conductivity

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2504
Author(s):  
Yuanzhou Chen ◽  
Junlin Chen ◽  
Yingming Zhang ◽  
Ziyue Hu ◽  
Weijian Wu ◽  
...  

The development of high thermally conductive polymer composites with low filler content remains challenging in the field of thermal interface materials (TIMs). Herein, we fabricated a series of flexible fiber membranes (TMMFM) with high thermally conductive based on thermoplastic polyurethane (TPU) and acidified multiwalled carbon nanotubes (a-MWCNTs) via electrospinning and ultrasonic anchoring method. The SEM and TEM results demonstrated that the a-MWCNTs aligned along the fiber orientation in the membrane and anchored on the membrane surface strongly, which can establish the heat conduction path both in the horizontal and vertical directions. With the incorporation of 10 wt% a-MWCNTs, the horizontal direction (λ∥) and vertical direction (λ⊥) thermal conductivity value of TMMFM-5 was 3.60 W/mK and 1.79 W/mK, respectively, being 18 times and 10 times higher compared to pure TPU fiber membranes. Furthermore, the TMMFM maintained favorable flexibility of the TPU matrix because the small amount of a-MWCNTs only slightly hinders the mobility of the TPU molecular chain. The performance of the obtained TMMFM unveils their potential as a promising choice of flexible TIMs.

2020 ◽  
Vol 44 (43) ◽  
pp. 18823-18830
Author(s):  
Yue Ruan ◽  
Nian Li ◽  
Cui Liu ◽  
Liqing Chen ◽  
Shudong Zhang ◽  
...  

The TPU-based thermally conductive composite reaches a thermal conductivity of 1.35 W m−1 K−1 and increases the tensile strength by at least 300%.


2019 ◽  
Vol 33 (8) ◽  
pp. 1017-1029 ◽  
Author(s):  
Honglin Luo ◽  
Jikui Liu ◽  
Zhiwei Yang ◽  
Quanchao Zhang ◽  
Haiyong Ao ◽  
...  

Electrically insulating yet thermally conductive polymer-based composites are highly sought after in aerospace field. In this work, for the first time, electrically insulating but thermally conductive polyimide (PI) composites are fabricated by simultaneously incorporating micro- and nano-sized aluminum nitride (AlN) particles via a simple, economic, and scalable method of ball milling and subsequent hot-pressing process. The thermal conductivity, dielectric, and mechanical properties of the PI composites depend on the ratio of micro-sized AlN (m-AlN) to nano-sized AlN (n-AlN) and the total content of AlN in the PI composites. The thermal conductivity of the PI composites with 40 wt% m-AlN and 20 wt% n-AlN is 1.5 ± 0.05 W·m−1·K−1, which is 10 times higher than that of bare PI. The PI composites hold a great potential in aerospace industries.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


Author(s):  
Tyler J. Sonsalla ◽  
Leland Weiss ◽  
Arden Moore ◽  
Adarsh Radadia ◽  
Debbie Wood ◽  
...  

Waste heat is a major energy loss in manufacturing facilities. Thermally conductive polymer composite heat exchangers could be utilized in the ultralow temperature range (below 200° C) for waste heat recovery. Fused deposition modeling (FDM), also known as three-dimensional (3-D) printing, has become an increasingly popular technology and presents one approach to fabrication of these exchangers. The primary challenge to the use of FDM is the low-conductivity of the materials themselves. This paper presents a study of a new polymer-Zn composite designed for enhanced thermal conductivity for usage in FDM systems. Thermal properties were assessed in addition to basic printability. Filler volume percentages were varied to study the effects on material properties. Scanning electron microscope (SEM) images were taken of the 3-D printed test pieces to determine filler orientation and filler distribution. Lastly, experimentally obtained thermal conductivity values were compared to the theoretical thermal conductivity values predicted from the Lewis-Nielsen model.


2021 ◽  
Author(s):  
RUIMIN MA ◽  
Hanfeng Zhang ◽  
Tengfei Luo

Developing amorphous polymers with desirable thermal conductivity has significant implications, as they are ubiquitous in applications where thermal transport is critical. Conventional Edisonian approaches are slow and without guarantee of success in material development. In this work, using a reinforcement learning scheme, we design polymers with thermal conductivity above 0.4 W/m- K. We leverage a machine learning model trained against 469 thermal conductivity data calculated from high-throughput molecular dynamics (MD) simulations as the surrogate for thermal conductivity prediction, and we use a recurrent neural network trained with around one million virtual polymer structures as a polymer generator. For all newly generated polymers with thermal conductivity > 0.400 W/m-K, we have evaluated their synthesizability by calculating the synthesis accessibility score and validated the thermal conductivity of selected polymers using MD simulations. The best thermally conductive polymer designed has a MD-calculated thermal conductivity of 0.693 W/m-K, which is also estimated to be easily synthesizable. Our demonstrated inverse design scheme based on reinforcement learning may advance polymer development with target properties, and the scheme can also be generalized to other materials development tasks for different applications.


2019 ◽  
Vol 32 (3) ◽  
pp. 324-333 ◽  
Author(s):  
Ting Fei ◽  
Yanbao Li ◽  
Baocheng Liu ◽  
Chengbo Xia

Polymer-based composites with high thermal conductivity have great potential application as thermal management materials. This study was devoted to improving the thermal conductivity of the flexible thermoplastic polyurethane (TPU) by employing boron nitride (BN) as heat filler. We prepared flexible and thermally conductive TPU/BN composite via solution mixing and hot pressing. The thermal conductivity of the TPU/BN composite with 50 wt% BN (32.6 vol%) reaches 3.06 W/m·K, approximately 1290% enhancement compared to that of pure TPU (0.22 W/m·K). In addition, the thermal conductivity of our flexible TPU/BN composite with 30 wt% BN is almost not varied (a decrease of only 2.5%) after 100 cycles of mechanical bending, which indicates the high stability of heat conduction of our flexible TPU/BN composite under mechanical bending. The maximum tensile strength of the TPU/BN composite with 5 wt% BN is 48.9 MPa, 14% higher than that of pure TPU (43.2 MPa). Our flexible and highly thermally conductive TPU/BN composites show promise for heat dissipation in various applications in the electronics field.


2007 ◽  
Vol 129 (4) ◽  
pp. 469-472 ◽  
Author(s):  
Hong He ◽  
Renli Fu ◽  
Yanchun Han ◽  
Yuan Shen ◽  
Deliu Wang

Traditionally, large quantities of ceramic fillers are added to polymers in order to obtain high thermally conductive polymer composites, which are used for electronic encapsulants. However, that is not cost effective enough. In this study, Si3N4 particle filled epoxy composite with a novel structure was fabricated by a processing method and structure design. Epoxy resin used in particle form was obtained by premixing and crushing. Different particle sizes were selected by sieving. High thermal conductivity was achieved at relative low volume fraction of the filler. The microstructure of the composites indicates that a continuous network is formed by the filler, which mainly completes the heat conduction. Thermal conductivity of the composites increases as the filler content increases, and the samples exhibit a highest thermal conductivity of 1.8W∕mK at 30% volume fraction of the filler in the composites using epoxy particles of 2mm. The composites show low dielectric constant and low dielectric loss.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 379
Author(s):  
Seonmin Lee ◽  
Jooheon Kim

Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films.


2012 ◽  
Vol 729 ◽  
pp. 80-84 ◽  
Author(s):  
András Suplicz ◽  
József Gábor Kovács

In the recent years a remarkable development can be observed in the electronics. New products of electronic industry generate more and more heat. To dissipate this heat, thermally conductive polymers offer new possibilities. The goal of this work was to develop a novel polymer based material, which has a good thermal conduction. The main purpose during the development was that this material can be processed easily with injection molding. To eliminate the weaknesses of the traditional conductive composites low-melting-point alloy was applied as filler. Furthermore in this work the effect of the filler content on thermal conductivity, on structure and on mechanical properties was investigated.


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1984-1991
Author(s):  
Yue Yuan ◽  
Wei Wu ◽  
Huanbo Hu ◽  
Dongmei Liu ◽  
Hui Shen ◽  
...  

The introduction of hybrid fillers in SLS technology is an effective method for the manufacture of thermally conductive polymer composites with high thermal conductivity, complex structures and good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document