scholarly journals Computational Prediction and Experimental Values of Mechanical Properties of Carbon Nanotube Reinforced Cement

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2997
Author(s):  
Carlos Talayero ◽  
Omar Aït-Salem ◽  
Pedro Gallego ◽  
Alicia Páez-Pavón ◽  
Rosario G. Merodio-Perea ◽  
...  

The main objective of this study is to create a rigorous computer model of carbon nanotube composites to predict their mechanical properties before they are manufactured and to reduce the number of physical tests. A detailed comparison between experimental and computational results of a cement-based composite is made to match data and find the most significant parameters. It is also shown how the properties of the nanotubes (Young’s modulus, aspect ratio, quantity, directionality, clustering) and the cement (Young’s modulus) affect the composite properties. This paper tries to focus on the problem of modeling carbon nanotube composites computationally, and further study proposals are given.

2018 ◽  
Vol 6 (6) ◽  
pp. 212-225
Author(s):  
Elias Randjbaran ◽  
Rizal Zahari ◽  
Dayang L. Majid ◽  
Mohamed T. H. Sultan ◽  
Norkhairunnisa Mazlan

Motivation/Background: Current review paper is about the forecast of Young's modulus for carbon nanotubes, from both hypothetical and exploratory angles are introduced.  The disparities between the estimations of Young's modulus announced in the writing are broke down, and distinctive patterns of the outcomes are examined. Explain the importance of the problem investigated in the paper. Include here a statement of the main research question. Method: A whole investigation is performed to feature the obstructions and downsides of the demonstrating methods and crucial presumptions utilized which ought to be defeated in additionally contemplates. Conclusions: The perspectives that ought to be considered all the more precisely in demonstrating carbon nanotube composites are distinguished.


2020 ◽  
Vol 12 ◽  
pp. 42-52
Author(s):  
S. A. Muslov ◽  
◽  
A. I. Lotkov ◽  
S. D. Arutyunov ◽  
T. M. Albakova ◽  
...  

A review of studies of the mechanical properties of human and animal heart tissues has been performed. Based on literature data, a form of approximating function is found for the dependence of the Young’s modulus of the ventricles of the human heart on the magnitude of the deformation. The average values of the Young’s modulus and other elastic constants were calculated and compared with the known experimental values. The coefficients C1 and C2 of the two-parameter hyperelastic myocardial Mooney-Rivlin model are calculated.


Author(s):  
Mohsen Motamedi ◽  
AH Naghdi ◽  
SK Jalali

Composite materials have become popular because of high mechanical properties and lightweight. Aluminum/carbon nanotube is one of the most important metal composite. In this research, mechanical properties of aluminum/carbon nanotube composite were obtained using molecular dynamics simulation. Then, effect of temperature on stress–strain curve of composite was studied. The results showed by increasing temperature, the Young’s modulus of composite was decreased. More specifically increasing the temperature from 150 K to 620 K, decrease the Young’s modulus to 11.7%. The ultimate stress of composite also decreased by increasing the temperature. A continuum model of composite was presented using finite element method. The results showed the role of carbon nanotube on strengthening of composite.


Sign in / Sign up

Export Citation Format

Share Document