scholarly journals Metal Nanoparticles against Viruses: Possibilities to Fight SARS-CoV-2

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3118
Author(s):  
Marcelly Chue-Gonçalves ◽  
Giovana N. Pereira ◽  
Lígia C. Faccin-Galhardi ◽  
Renata K. T. Kobayashi ◽  
Gerson Nakazato

In view of the current Coronavirus Disease 2019 (COVID-19) pandemic outbreak, the research community is focusing on development of diagnostics, treatment, and vaccines to halt or reverse this scenario. Although there are already various vaccines available, adaptive mutations in the SARS-CoV-2 genome can alter its pathogenic potential and, at the same time, increase the difficulty of developing drugs or immunization by vaccines. Nanotechnology carries a potential to act in all stages in fighting this viral disease, with several possibilities of strategies such as applying nanoparticles directly as antivirals in delivery systems against these viruses or incorporating them in materials, with power of achievement in therapeutics, vaccines and prevention. In this paper, we review and bring insights of recent studies using metal nanocomposites as antivirals against coronavirus and structurally similar viruses.

2015 ◽  
Vol 44 (19) ◽  
pp. 8906-8916 ◽  
Author(s):  
Sankar Das ◽  
Subhra Jana

Halloysite/metal nanocomposites have been synthesized through the immobilization of preformed and in situ synthesized metal nanoparticles over halloysite surfaces, which in turn produce efficient, cost-effective, and environmentally benign heterogeneous catalysts.


2009 ◽  
Vol 1234 ◽  
Author(s):  
Yan Lu ◽  
Matthias Ballauff

AbstractIn our study, thermosensitive core-shell microgel particles have been used as the carrier system for the deposition of metal nanoparticles, in which the core consists of polystyrene (PS) whereas the shell consists of poly(N-isopropylacrylamide) (PNIPA) network crosslinked by N, N'-methylenebisacrylamide (BIS). Silver, gold and palladium nanoparticles have been homogeneously embedded into thermosensitive PNIPA-networks, respectively. We demonstrate that the catalytic activity of the microgel-metal nanocomposites can be tuned by the volume transition within the microgel of these systems by using the catalytic reduction of 4-nitrophenol as the model reaction. Moreover, following the concept of a “green chemistry”, the oxidation of alcohols to the corresponding aldehydes or ketones can be carried out in aqueous solution under aerobic conditions at room temperature by using microgel-metal nanocomposites as the catalyst. The influence of temperature on the catalytic activity has been also investigated, which will be affected both by the volume transition of the microgel and by the change of polarity of the microgel in this case.


2020 ◽  
Vol 58 (1) ◽  
pp. 343-361 ◽  
Author(s):  
Jonàs Oliva ◽  
Miguel Ángel Redondo ◽  
Jan Stenlid

Global change is pressing forest pathologists to solve increasingly complex problems. We argue that understanding interactive effects between forest pathogens and global warming, globalization, and land-use changes may benefit from a functional ecology mindset. Traits can be more informative about ecological functions than species inventories and may deliver a more mechanistic description of forest disease. Myriad microbes with pathogenic potential interact with forest ecosystems at different organizational levels. Elucidation of functional traits may enable the microbial complexity to be reduced into manageable categories with predictive power. In this review, we propose guidelines that allow the research community to develop a functional forest pathology approach. We suggest new angles by which functional questions can be used to resolve burning issues on tree disease. Building up functional databases for pathogenicity is key to implementing these approaches.


2021 ◽  
Vol 22 (20) ◽  
pp. 11227
Author(s):  
Jing Miao ◽  
Peng Gao ◽  
Qian Li ◽  
Kaifeng He ◽  
Liwen Zhang ◽  
...  

Chronic hepatitis B (CHB) is an infectious viral disease that is prevalent worldwide. Traditional nucleoside analogues, as well as the novel drug targets against hepatitis B virus (HBV), are associated with certain critical factors that influence the curative effect, such as biological stability and safety, effective drug delivery, and controlled release. Nanoparticle drug delivery systems have significant advantages and have provided a basis for the development of anti-HBV strategies. In this review, we aim to review the advances in nanoparticle drug delivery systems for anti-hepatitis B virus therapy by summarizing the relevant literature. First, we focus on the characteristics of nanoparticle drug delivery systems for anti-HBV therapy. Second, we discuss the nanoparticle delivery systems for anti-HBV nucleoside drugs, gene-based drugs, and vaccines. Lastly, we provide an overview of the prospects for nanoparticle-based anti-HBV agents.


Author(s):  
Valerie A. Storey ◽  
John Fulton

This chapter considers how doctoral programs are designed; the different types of courses available; and the relationship between program design and capstone in the U.K. and U.S.A. We will explore the variety of ways in which professional doctorate programs prepare candidates for their research study in the U.K. and the U.S.A. by drawing on quantitative data obtained from a survey of 150 higher education institutions in the two identified countries. We examine the diversity of program design; courses taken by doctoral candidates; and capstone artefact i.e. thesis/dissertation model. The global research community thrives by recognising diversity. It is therefore necessary to emphasise and promote the various doctoral models currently being designed while at the same time increase our understanding between the program design and delivery, the nature of the research produced, and methods for disseminating this new knowledge.


Sign in / Sign up

Export Citation Format

Share Document