scholarly journals Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3446
Author(s):  
Mohammed Zahedul Islam Nizami ◽  
Veena W. Xu ◽  
Iris X. Yin ◽  
Ollie Y. Yu ◽  
Chun-Hung Chu

Nanoparticles based on metal and metallic oxide have become a novel trend for dental use as they interfere with bacterial metabolism and prevent biofilm formation. Metal and metal oxide nanoparticles demonstrate significant antimicrobial activity by metal ion release, oxidative stress induction and non-oxidative mechanisms. Silver, zinc, titanium, copper, and magnesium ions have been used to develop metal and metal oxide nanoparticles. In addition, fluoride has been used to functionalise the metal and metal oxide nanoparticles. The fluoride-functionalised nanoparticles show fluoride-releasing properties that enhance apatite formation, promote remineralisation, and inhibit demineralisation of enamel and dentine. The particles’ nanoscopic size increases their surface-to-volume ratio and bioavailability. The increased surface area facilitates their mechanical bond with tooth tissue. Therefore, metal and metal oxide nanoparticles have been incorporated in dental materials to strengthen the mechanical properties of the materials and to prevent caries development. Another advantage of metal and metal oxide nanoparticles is their easily scalable production. The aim of this study is to provide an overview of the use of metal and metal oxide nanoparticles in caries prevention. The study reviews their effects on dental materials regarding antibacterial, remineralising, aesthetic, and mechanical properties.

2012 ◽  
Vol 1 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Agnieszka Gajewicz ◽  
Tomasz Puzyn ◽  
Bakhtiyor Rasulev ◽  
Danuta Leszczynska ◽  
Jerzy Leszczynski

Author(s):  
Payam Khodaparast ◽  
Zoubeida Ounaies

Nanoparticle modified polymers have promise as hybrid materials that exhibit properties beyond those predicted by mixing law theories. In the case of metal-oxide nanoparticles in a polymer, it is expected that multifunctional properties of the obtained nanocomposite, including dielectric and mechanical, will be dominated by presence of interface rather than predicted by the inherent properties of individual components. This paper will focus on understanding the role of different types of nanoparticles, namely, titania, silica and alumina and a polymer matrix, Polyvinylidene fluoride (PVDF) in affecting the final dielectric and mechanical properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sung-Hyun Kim ◽  
Jin Hee Lee ◽  
Kikyung Jung ◽  
Jun-Young Yang ◽  
Hyo-Sook Shin ◽  
...  

Human skins are exposed to nanomaterials in everyday life from various sources such as nanomaterial-containing cosmetics, air pollutions, and industrial nanomaterials. Nanomaterials comprising metal haptens raises concerns about the skin sensitization to nanomaterials. In this study, we evaluated the skin sensitization of nanomaterials comparing metal haptens in vivo and in vitro. We selected five metal oxide NPs, containing copper oxide, cobalt monoxide, cobalt oxide, nickel oxide, or titanium oxide, and two types of metal chlorides (CoCl2 and CuCl2), to compare the skin sensitization abilities between NPs and the constituent metals. The materials were applied to KeratinoSensTM cells for imitated skin-environment setting, and luciferase induction and cytotoxicity were evaluated at 48 h post-incubation. In addition, the response of metal oxide NPs was confirmed in lymph node of BALB/C mice via an in vivo method. The results showed that CuO and CoO NPs induce a similar pattern of positive luciferase induction and cytotoxicity compared to the respective metal chlorides; Co3O4, NiO, and TiO2 induced no such response. Collectively, the results implied fast-dissolving metal oxide (CuO and CoO) NPs release their metal ion, inducing skin sensitization. However, further investigations are required to elucidate the mechanism underlying NP-induced skin sensitization. Based on ion chelation data, metal ion release was confirmed as the major “factor” for skin sensitization.


2016 ◽  
Vol 75 (2) ◽  
pp. 462-473 ◽  
Author(s):  
Baranidharan Sundaram ◽  
Arun Kumar

This study evaluated the influence of metal oxide nanoparticles (NPs) (Ag2O, TiO2) and their mixture on activated sludge for 180 days. When tested, a mixture of NPs at 1 and 10 mg/L had greater impact than individual NPs, in which maximum reduction in chemical oxygen demand (COD) elimination (76.3%) was observed after 150 days for 1 mg/L (500 mg/L COD concentration) and after 180 days (70.2%) for 10 mg/L (250 mg/L COD concentration). TiO2 had higher inhibition on COD reduction than Ag2O NPs at 1 and 10 mg/L. An antagonistic effect was observed in which the combination of individual NPs had a greater effect than a mixture of NPs. Reduction in COD elimination was found to be dependent on NP type and concentration (p < 0.05). Further, metal ion concentration was higher in sludge than supernatant irrespective of NPs, while microscopic analysis showed the presence of NPs inside activated sludge. Among NPs tested, the concentration of Ti4+ ion was greater in sludge than in the Ag+ ion, thus indicating that TiO2 has a greater affinity than Ag2O NPs. All three factors (NP type, NP concentration, organic concentration) play a significant role in imparting COD removal (p < 0.05). Future studies are required to quantify NP concentration to minimize NP effect on plant performance.


2013 ◽  
Vol 246 ◽  
pp. 125-136 ◽  
Author(s):  
K. Yogesh Kumar ◽  
H.B. Muralidhara ◽  
Y. Arthoba Nayaka ◽  
J. Balasubramanyam ◽  
H. Hanumanthappa

2013 ◽  
Vol 1 ◽  
pp. 194308921350681 ◽  
Author(s):  
Amirhosein Berendjchi ◽  
Ramin Khajavi ◽  
Mohammad Esmaeil Yazdanshenas

Inorganic metal oxide nanoparticles are mainly synthesized by sol–gel process. The most important beneficial advantage of mentioned process is facile and the time-consuming route. The resultant meta-stable synthesized inorganic nanoparticles can easily modify different substrates and alter their performance. The presented review investigates the possible applications of nanosols (especially silica and titanium dioxide sols) in the field of textile industry, including the formation of hydrophobic, bioactive or protective metallic oxide coatings on textiles by physical or chemical modifying of nanosols.


2021 ◽  
Vol 8 (10) ◽  
pp. 146
Author(s):  
Abdulrahman A. Balhaddad ◽  
Isadora M. Garcia ◽  
Lamia Mokeem ◽  
Rashed Alsahafi ◽  
Fabrício Mezzomo Collares ◽  
...  

Advances in nanotechnology have unlocked exclusive and relevant capabilities that are being applied to develop new dental restorative materials. Metal oxide nanoparticles and nanotubes perform functions relevant to a range of dental purposes beyond the traditional role of filler reinforcement—they can release ions from their inorganic compounds damaging oral pathogens, deliver calcium phosphate compounds, provide contrast during imaging, protect dental tissues during a bacterial acid attack, and improve the mineral content of the bonding interface. These capabilities make metal oxide nanoparticles and nanotubes useful for dental adhesives and composites, as these materials are the most used restorative materials in daily dental practice for tooth restorations. Secondary caries and material fractures have been recognized as the most common routes for the failure of composite restorations and bonding interface in the clinical setting. This review covers the significant capabilities of metal oxide nanoparticles and nanotubes incorporated into dental adhesives and composites, focusing on the novel benefits of antibacterial properties and how they relate to their translational applications in restorative dentistry. We pay close attention to how the development of contemporary antibacterial dental materials requires extensive interdisciplinary collaboration to accomplish particular and complex biological tasks to tackle secondary caries. We complement our discussion of dental adhesives and composites containing metal oxide nanoparticles and nanotubes with considerations needed for clinical application. We anticipate that readers will gain a complete picture of the expansive possibilities of using metal oxide nanoparticles and nanotubes to develop new dental materials and inspire further interdisciplinary development in this area.


Sign in / Sign up

Export Citation Format

Share Document