scholarly journals Electrospray Deposition of Cellulose Nanofibers on Paper: Overcoming the Limitations of Conventional Coating

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Quim Tarrés ◽  
Roberto Aguado ◽  
M. Àngels Pèlach ◽  
Pere Mutjé ◽  
Marc Delgado-Aguilar

While the potential of cellulose nanofibers to enhance the mechanical and barrier properties of paper is well-known, there are many uncertainties with respect to how to apply them. In this study, we use not only bulk addition of micro-/nanofibers and bar coating with oxidized nanofibers, but also a combination of these and, as a novel element, electrospray deposition of nanofiber dispersions. Characterization involved testing the strength of uncoated and coated paper sheets, their resistance to air flow, their Bendtsen roughness, and their apparent density, plus visualization of their surface and cross-sections by scanning electron microscopy. As expected, bulk addition to the unrefined pulp was sufficient to attain substantial strengthening, but this enhancement was limited to approximately 124%. Following this, surface addition by bar coating improved air resistance, but not strength, since, as applying nanocellulose at high consistency was technically unfeasible, this was performed several times with detrimental drying stages in between. However, replacing bar coating with electrospraying helped us overcome these apparent limitations, producing enhancements in both barrier and tensile properties. It is concluded that electrosprayed nanofibers, owing to their uniform deposition and favorable interactions, operate as an effective binder between fibers (and/or fines).

Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


Author(s):  
J. S. Shah ◽  
R. Durkin ◽  
A. N. Farley

It is now possible to perform High Pressure Scanning Electron Microscopy (HPSEM) in the range 10 to 2000 Pa. Here the effect of scattering on resolution has been evaluated by calculating the profile of the beam in high pressure and assessing its effect on the image contrast . An experimental scheme is presented to show that the effect of the primary beam ionization is to reduce image contrast but this effect can be eliminated by a novel use of specimen current detection in the presence of an electric field. The mechanism of image enhancement is discussed in terms of collection of additional carriers generated by the emissive components.High Pressure SEM (HPSEM) instrumentation is establishing itself as commercially viable. There are now a number of manufacturers, such as JEOL, ABT, ESCAN, DEBEN RESEARCH, selling microscopes and accessories for HPSEM. This is because high pressure techniques have begun to yield high quality micrographs at medium resolution.To study the effect of scattering on the incident electron beam, its profile - in a high pressure environment - was evaluated by calculating the elastic and inelastic scattering cross sections for nitrogen in the energy range 5-25 keV. To assess the effect of the scattered beam on the image contrast, the modification of a sharp step contrast function due to scattering was calculated by single scattering approximation and experimentally confirmed for a 20kV accelerated beam.


2014 ◽  
Vol 84 (18) ◽  
pp. 1939-1947 ◽  
Author(s):  
Geoffrey RS Naylor ◽  
Margaret Pate ◽  
Graham J Higgerson

Previous researchers established a set of reference cottons with known fiber maturity and linear density (fineness) values based on the analysis of a large number of individual transverse fiber cross-sections viewed under the optical microscope. Part 1 identified that the limited optical resolution of the captured images may be the source of a significant systematic error in the assigned values of cell wall area and hence fiber maturity and linear density values. In this paper the optical microscopy technique was implemented. Individual cross-sections were measured using this approach and also higher resolution and higher magnification images were obtained using scanning electron microscopy. It was found that the data obtained from optical microscopy were similar to the SEM data, with the perimeter being 2% smaller, the cell wall area being 6% larger and the maturity ratio values being 8% higher. It was concluded that the combined approach of utilizing SEM in conjunction with optical imaging is a useful approach for verifying and perhaps correcting the data obtained from optical imaging. Further the SEM images highlighted that the current experimental protocol does not adequately address the challenge of ensuring that the fibers are mounted normal to the plane of cutting the transverse cross-section. Modeling demonstrated that while maturity ratio values are relatively insensitive to this misalignment, measured cell wall area values and hence fiber linear density values will be overestimated. This may be the major source of error associated with the technique and warrants further attention in future studies.


2014 ◽  
Vol 20 (5) ◽  
pp. 1534-1543 ◽  
Author(s):  
Annalaura Restivo ◽  
Ilaria Degano ◽  
Erika Ribechini ◽  
Josefina Pérez-Arantegui ◽  
Maria Perla Colombini

Abstract:An innovative approach, combining field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) analysis, is presented to investigate the degradation mechanisms affecting tannin-dyed wool. In fact, tannin-dyed textiles are more sensitive to degradation then those dyed with other dyestuffs, even in the same conservation conditions.FESEM-EDX was first used to study a set of 48 wool specimens (artificially aged) dyed with several raw materials and mordants, and prepared according to historical dyeing recipes. EDX analysis was performed on the surface of wool threads and on their cross-sections. In addition, in order to validate the model formulated by the analysis of reference materials, several samples collected from historical and archaeological textiles were subjected to FESEM-EDX analysis.FESEM-EDX investigations enabled us to reveal the correlation between elemental composition and morphological changes. In addition, aging processes were clarified by studying changes in the elemental composition of wool from the protective cuticle to the fiber core in cross-sections. Morphological and elemental analysis of wool specimens and of archaeological and historical textiles showed that the presence of tannins increases wool damage, primarily by causing a sulfur decrease and fiber oxidation.


2007 ◽  
Vol 333 ◽  
pp. 227-230
Author(s):  
Valeria Cannillo ◽  
Luca Lusvarghi ◽  
Tiziano Manfredini ◽  
M. Montorsi ◽  
Cristina Siligardi ◽  
...  

The present work was focused on glass-alumina functionally graded materials. The samples, produced by plasma spraying, were built as multi-layered systems by depositing several layers of slightly different composition, since their alumina and glass content was progressively changed. After fabricating the graded materials, several, proper characterization techniques were set up to investigate the gradient in composition, microstructure and related performances. A particular attention was paid to the observation of the graded cross sections by scanning electron microscopy, which allowed to visualize directly the graded microstructural changes. The scanning electron microscopy (SEM) inspection was integrated with accurate mechanical measurements, such as systematic depth-sensing Vickers microindentation tests performed on the graded cross sections.


2004 ◽  
Vol 36 (1) ◽  
pp. 607 ◽  
Author(s):  
I. Vakalas ◽  
G. Ananiadis ◽  
A. Zelilidis ◽  
N. Kontopoulos ◽  
B. Tsikouras

A number of polished thin sections from two cross sections within the Pindos foreland deposits were petrographically examined while microanalyses on certain minerals were carried out. Chemistry of these minerals is compared to analogous phases occurring in several formations in the neighbourhood of the studied areas which can stand as source areas. Our results reveal that the most probable source materials include the Pindos, Koziakas (and probably and Vourinos) ophiolite complexes, as well as metamorphic sequences of the Pelagonian Zone


2013 ◽  
Vol 21 (1) ◽  
pp. 149-160 ◽  
Author(s):  
I. M. Zougrou ◽  
M. Katsikini ◽  
F. Pinakidou ◽  
E. C. Paloura ◽  
L. Papadopoulou ◽  
...  

Earlymost Villafranchian fossil bones of an artiodactyl and a perissodactyl from the Milia excavation site in Grevena, Greece, were studied in order to evaluate diagenetic effects. Optical microscopy revealed the different bone types (fibro-lamellar and Haversian, respectively) of the two fragments and their good preservation state. The spatial distribution of bone apatite and soil-originating elements was studied using micro-X-ray fluorescence (µ-XRF) mapping and scanning electron microscopy. The approximate value of the Ca/P ratio was 2.2, as determined from scanning electron microscopy measurements. Bacterial boring was detected close to the periosteal region and Fe bearing oxides were found to fill bone cavities,e.g.Haversian canals and osteocyte lacunae. In the perissodactyl bone considerable amounts of Mn were detected close to cracks (the Mn/Fe weight ratio takes values up to 3.5). Goethite and pyrite were detected in both samples by means of metallographic microscopy. The local Ca/P ratio determined with µ-XRF varied significantly in metal-poor spots indicating spatial inhomogeneities in the ionic substitutions. XRF line scans that span the bone cross sections revealed that Fe and Mn contaminate the bones from both the periosteum and medullar cavity and aggregate around local maxima. The formation of goethite, irrespective of the local Fe concentration, was verified by the FeK-edge X-ray absorption fine structure (XAFS) spectra. Finally, SrK-edge extended XAFS (EXAFS) revealed that Sr substitutes for Ca in bone apatite without obvious preference to the Ca1or Ca2unit-cell site occupation.


2018 ◽  
Vol 941 ◽  
pp. 1248-1253
Author(s):  
Erika O. Avila-Davila ◽  
Victor M. Lopez-Hirata ◽  
Maribel L. Saucedo-Muñoz ◽  
Luis M. Palacios-Pineda ◽  
Ignacio Ramirez-Vargas ◽  
...  

The microstructural characterization of a blade made of Ni-based superalloy was carried out and discussed. The blade was removed from service, of a gas turbine, due to preventive maintenance. This component was studied on different cross sections according to the surface temperature obtained by ANSYS software. The cross sections were characterized by Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and High Resolution Scanning Electron Microscopy (HR-SEM). It was determined that the maximum value of total deformation is 0.001717 mm, located in the surface upper section of the blade, which not correspond to the section with the highest value of temperature calculated with ANSYS software. These results were consistent with the rafted microstructure observed at the upper region of the blade. Microcavities close to the MC carbides with a size of about 40x10-6m were also observed. The mechanical behavior of the Ni-based superalloy was studied by Rockwell Hardness testing (RHT). So, morphological changes were identified in the occurrence of the strengthening precipitated, γ', according to the operating conditions: stress and temperature. The average radius of the γ' precipitated was obtained by computer image analysis using ImageJ software. No clear relationship was found between the hardness values obtained and the coarsened γ' precipitated. A bimodal occurrence of coarsened γ' particles was identified distributed through γ matrix by HR-SEM. Thus, this study was carried out with the purpose to identify the critical parameters that promote microstructural changes in the Ni-based superalloy and therefore affect the mechanical behavior in this turbine blade.


2011 ◽  
Vol 284-286 ◽  
pp. 1397-1400
Author(s):  
Huai Yao ◽  
Yong Zhi Wang ◽  
Bo Xu

The high pressure and high temperature sintering of α-Si3N4 and γ-Si3N4 with Y2O3-Al2O3-La2O3 as additives were studied under pressures of 5.4 GPa and temperatures of 1420-1770 K. The effects of sintering temperatures and pressures on properties of sintered ceramic samples were investigated with X-ray diffraction and scanning electron microscopy. The results show that γ-Si3N4 and α-Si3N4 is transformed to β-Si3N4 completely. The highest relative densities and Vickers hardness (HV) of sintered samples are 98.71 and 21.76GPa, respectively. The sintered samples were composed of elongated β-Si3N4 rod crystals with disordered orientation and had intergranular interlocks and uniform and compact microstructure. Pulled out crystal grains on the fractured cross sections were obviously observed by SEM.


Sign in / Sign up

Export Citation Format

Share Document