scholarly journals Hydrothermal Synthesis of Hierarchical SnO2 Nanostructures for Improved Formaldehyde Gas Sensing

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Pengyu Ren ◽  
Lingling Qi ◽  
Kairui You ◽  
Qingwei Shi

The indoor environment of buildings affects people’s daily life. Indoor harmful gases include volatile organic gas and greenhouse gas. Therefore, the detection of harmful gas by gas sensors is a key method for developing green buildings. The reasonable design of SnO2-sensing materials with excellent structures is an ideal choice for gas sensors. In this study, three types of hierarchical SnO2 microspheres assembled with one-dimensional nanorods, including urchin-like microspheres (SN-1), flower-like microspheres (SN-2), and hydrangea-like microspheres (SN-3), are prepared by a simple hydrothermal method and further applied as gas-sensing materials for an indoor formaldehyde (HCHO) gas-sensing test. The SN-1 sample-based gas sensor demonstrates improved HCHO gas-sensing performance, especially demonstrating greater sensor responses and faster response/recovery speeds than SN-2- and SN-3-based gas sensors. The improved HCHO gas-sensing properties could be mainly attributed to the structural difference of smaller nanorods. These results further indicate the uniqueness of the structure of the SN-1 sample and its suitability as HCHO- sensing material.

2021 ◽  
Vol 16 (2) ◽  
pp. 337-342
Author(s):  
Gaoqi Zhang ◽  
Fan Zhang ◽  
Kaifang Wang ◽  
Shanyu Liu ◽  
Ying Wang ◽  
...  

Indoor formaldehyde detection is of great important at present. Using efficient solvothermal method, nanosheet-constructed and nanorod-constructed hierarchical tin dioxide (SnO2) microspheres were successfully synthesized in this work and used for the gas sensing material for indoor formaldehyde application. The as-prepared two kinds of SnO2 gas sensing materials were applied to fabricate the gas sensors and formaldehyde gas sensing experiments were carried out. The HCHO gas sensing tests indicate that the gas response of the nanosheet-constructed SnO2 microspheres is about 1.7 times higher than that of the nanorod-constructed SnO2 microspheres. In addition, both of the two SnO2 based gas sensors show almost fast response and recovery time to HCHO gas. For the nanosheet-constructed microspheres, the response value is estimated to be 32.0 at 350 °C to 60 ppm formaldehyde gas, while the response and recovery times are 7 and 5 s, respectively. The simple and efficient preparation method and improved gas sensing properties show that the as-synthesized hierarchical SnO2 microsphere that is constructed by a large amount of nanosheets exhibits significant potential application for the indoor formaldehyde sensing.


2013 ◽  
Vol 28 (6) ◽  
pp. 584-588 ◽  
Author(s):  
Shuang XU ◽  
Ying YANG ◽  
Hong-Yuan WU ◽  
Chao JIANG ◽  
Li-Qiang JING ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3947
Author(s):  
Wei Wang ◽  
Qinyi Zhang ◽  
Ruonan Lv ◽  
Dong Wu ◽  
Shunping Zhang

High performance formaldehyde gas sensors are widely needed for indoor air quality monitoring. A modified layer of zeolite on the surface of metal oxide semiconductors results in selectivity improvement to formaldehyde as gas sensors. However, there is insufficient knowledge on how the thickness of the zeolite layer affects the gas sensing properties. In this paper, ZSM-5 zeolite films were coated on the surface of the SnO2 gas sensors by the screen printing method. The thickness of ZSM-5 zeolite films was controlled by adjusting the numbers of screen printing layers. The influence of ZSM-5 film thickness on the performance of ZSM-5/SnO2 gas sensors was studied. The results showed that the ZSM-5/SnO2 gas sensors with a thickness of 19.5 μm greatly improved the selectivity to formaldehyde, and reduced the response to ethanol, acetone and benzene at 350 °C. The mechanism of the selectivity improvement to formaldehyde of the sensors was discussed.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550011 ◽  
Author(s):  
A. Sharma ◽  
M. Tomar ◽  
V. Gupta ◽  
A. Badola ◽  
N. Goswami

In this paper gas sensing properties of 0.5–3% polyaniline (PAni) doped SnO 2 thin films sensors prepared by chemical route have been studied towards the trace level detection of NO 2 gas. The structural, optical and surface morphological properties of the PAni doped SnO 2 thin films were investigated by performing X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Raman spectroscopy measurements. A good correlation has been identified between the microstructural and gas sensing properties of these prepared sensors. Out of these films, 1% PAni doped SnO 2 sensor showed high sensitivity towards NO 2 gas along with a sensitivity of 3.01 × 102 at 40°C for 10 ppm of gas. On exposure to NO 2 gas, resistance of all sensors increased to a large extent, even greater than three orders of magnitude. These changes in resistance upon removal of NO 2 gas are found to be reversible in nature and the prepared composite film sensors showed good sensitivity with relatively faster response/recovery speeds.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 440
Author(s):  
Daniel Garcia-Osorio ◽  
Pilar Hidalgo-Falla ◽  
Henrique E. M. Peres ◽  
Josue M. Gonçalves ◽  
Koiti Araki ◽  
...  

Gas sensors are fundamental for continuous online monitoring of volatile organic compounds. Gas sensors based on semiconductor materials have demonstrated to be highly competitive, but are generally made of expensive materials and operate at high temperatures, which are drawbacks of these technologies. Herein is described a novel ethanol sensor for room temperature (25 °C) measurements based on hematite (α‑Fe2O3)/silver nanoparticles. The AgNPs were shown to increase the oxide semiconductor charge carrier density, but especially to enhance the ethanol adsorption rate boosting the selectivity and sensitivity, thus allowing quantification of ethanol vapor in 2–35 mg L−1 range with an excellent linear relationship. In addition, the α-Fe2O3/Ag 3.0 wt% nanocomposite is cheap, and easy to make and process, imparting high perspectives for real applications in breath analyzers and/or sensors in food and beverage industries. This work contributes to the advance of gas sensing at ambient temperature as a competitive alternative for quantification of conventional volatile organic compounds.


2013 ◽  
Vol 187 ◽  
pp. 301-307 ◽  
Author(s):  
Peng Sun ◽  
Xiaodong Mei ◽  
Yaxin Cai ◽  
Jian Ma ◽  
Yanfeng Sun ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3261
Author(s):  
Wenhao Wang ◽  
Lu Zhang ◽  
Yanli Kang ◽  
Feng Yu

(1) Background: Toluene gas is widely used in indoor decoration and industrial production, and it not only pollutes the environment but also poses serious health risks. (2) Methods: In this work, TiO2−CoFe2O4−Ag quaternary composite gas-sensing material was prepared using a hydrothermal method to detect toluene. (3) Results: The recombination of electron–hole pairs was suppressed, and the light absorption range was expanded after constructing a heterojunction and doping with Ag, according to ultraviolet–visible (UV–vis) diffuse reflectance spectra and photoluminescence spectroscopy. Moreover, in the detection range of toluene gas (3 ppm–50 ppm), the response value of TiO2−CoFe2O4−Ag increased from 2 to 15, which was much higher than that of TiO2−Ag (1.7) and CoFe2O4−Ag (1.7). In addition, the working temperature was reduced from 360 °C to 263 °C. Furthermore, its response/recovery time was 40 s/51 s, its limit of detection was as low as 10 ppb, and its response value to toluene gas was 3–7 times greater than that of other interfering gases under the same test conditions. In addition, the response value to 5 ppm toluene was increased from 3 to 5.5 with the UV wavelength of 395 nm–405 nm. (4) Conclusions: This is primarily due to charge flow caused by heterojunction construction, as well as metal sensitization and chemical sensitization of novel metal doping. This work is a good starting point for improving gas-sensing capabilities for the detection of toluene gas.


Sign in / Sign up

Export Citation Format

Share Document