scholarly journals Aggregation, Sedimentation, and Dissolution of Copper Oxide Nanoparticles: Influence of Low-Molecular-Weight Organic Acids from Root Exudates

Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 841 ◽  
Author(s):  
Cheng Peng ◽  
Hong Tong ◽  
Peng Yuan ◽  
Lijuan Sun ◽  
Lei Jiang ◽  
...  

The rhizosphere is an essential pathway for the uptake of metal-based nanoparticles (MNPs) by plant roots. However, the interaction between root exudates and MNPs is still unclear. In this study, we initially identified the major low-molecular-weight organic acids (LMWOAs) in the rice root exudates using hydroponics. Then, the individual LMWOAs were added to CuO nanoparticle suspensions to investigate their effects on the environmental behavior of the MNPs. The results showed that both the variety and the concentration of LMWOAs impacted the aggregation, sedimentation, and dissolution of CuO nanoparticles (NPs). Almost all LMWOAs except succinic acid inhibited the aggregation of CuO NPs by enhancing the electrostatic repulsive force between NPs. The presence of citric and oxalic acids rather than lactic acid greatly improved the stability of CuO NP suspensions, but other acids showed a low promoting and high inhibiting effect on NP sedimentation. Moreover, all the LMWOAs from root exudates facilitated the dissolution of CuO NPs with a positive dose-dependent correlation, especially formic acid. Notably, citric acid, as the most abundant LMWOAs in rice root exudates, largely determined the aggregation, sedimentation, and dissolution of CuO NPs. This study provides a better understanding on NP–plant interactions in the rhizosphere.

2016 ◽  
Vol 15 (6) ◽  
pp. 735-743 ◽  
Author(s):  
Yongmei He ◽  
Fangdong Zhan ◽  
Yuan Li ◽  
Weiwei Xu ◽  
Yanqun Zu ◽  
...  

Solar UV-B radiation had a notable effect on the emission of CH4 from a rice paddy, of which the mechanism was related to its influence on the excretion by roots of LMWOAs in the rhizosphere.


2001 ◽  
Vol 12 (5) ◽  
pp. 305-311 ◽  
Author(s):  
J. A. Lucas García ◽  
C. Barbas ◽  
A. Probanza ◽  
M. L. Barrientos ◽  
F. J. Gutierrez Mañero

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Karla Araya-Castro ◽  
Tzu-Chiao Chao ◽  
Benjamín Durán-Vinet ◽  
Carla Cisternas ◽  
Gustavo Ciudad ◽  
...  

Amongst different living organisms studied as potential candidates for the green synthesis of copper nanoparticles, algal biomass is presented as a novel and easy-to-handle method. However, the role of specific biomolecules and their contribution as reductant and capping agents has not yet been described. This contribution reports a green synthesis method to obtain copper oxide nanoparticles (CuO-NPs) using separated protein fractions from an aqueous extract of brown algae Macrocystis pyrifera through size exclusion chromatography (HPLC-SEC). Proteins were detected by a UV/VIS diode array, time-based fraction collection was carried out, and each collected fraction was used to evaluate the synthesis of CuO-NPs. The characterization of CuO-NPs was evaluated by Dynamic Light Scattering (DLS), Z-potential, Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) detector. Low Molecular Weight (LMW) and High Molecular Weight (HMW) protein fractions were able to synthesize spherical CuO-NPs. TEM images showed that the metallic core present in the observed samples ranged from 2 to 50 nm in diameter, with spherical nanostructures present in all containing protein samples. FTIR measurements showed functional groups from proteins having a pivotal role in the reduction and stabilization of the nanoparticles. The highly negative zeta potential average values from obtained nanoparticles suggest high stability, expanding the range of possible applications. This facile and novel protein-assisted method for the green synthesis of CuO-NPs may also provide a suitable tool to synthesize other nanoparticles that have different application areas.


Sign in / Sign up

Export Citation Format

Share Document